Resonanzen mal anders – Musizieren mit Schrittmotoren

Juni 21st, 2013

Normalerweise sind Resonanzen bei Schrittmotoren unerwünscht. Man kann sich Resonanzeffekte aber auch zu Nutze machen.

Durch das schrittweise weiterschalten des Rotors im Schrittmotor wird die umgebende Mechanik (einschließlich des Stators) zum Schwingen angeregt. Dieser Effekt tritt im Vollschritt Betrieb besonders deutlich auf. Die dabei erzeugten Frequenzen sind abhängig von der Drehzahl des Motors. Die Grundschwingung entspricht der Taktrate, also der Anzahl der Vollschritte pro Umdrehung. Variiert man die Ansteuerung des Motors geschickt, lassen sich mit dem Motor Melodien abspielen. In gewissen Grenzen kann man sogar die Amplitude dynamisch anpassen, wenn man den Phasenstrom variiert.

Einige ausgewählte Beispiele die ich besonders interessant finde habe ich in der nachfolgenden Linksammlung zusammen gestellt:

James Bond theme – 8-stimming mit Diskettenlaufwerken

Smoke on the waters – 8-stimming mit Diskettenlaufwerken

Starwars imperial march

Nochmal imperial march – 8-stimmig und mit Backlight

Depeche Mode – Enjoy the silence

Tetris auf einer CNC-Maschine

Spiegel Online über Musik mit CNC-Fräsen:
http://www.spiegel.de/netzwelt/web/maschinenmusik-so-krass-roehrt-die-cnc-fraese-a-620661.html

LPT, USB und Ethernet – Welche Schnittstelle für Desktop-CNC Maschinen?

Mai 18th, 2013

In der Zeitschrift „Hardware Hacks“ Ausgabe 1/2013 wurde im Rahmen eines Tests (S. 30ff) von Desktop-CNC Maschinen kritisiert, dass bei vielen der getesteten Maschinen noch der LPT-Port (Parallelport) als Schnittstelle zum PC verwendet wird. Warum das meiner Meinung nach trotzdem sinnvoll ist, will ich nachfolgend erläutern:
Es stimmt zwar, dass der Druckerport (LPT) im PC längst obsolet ist. Trotzdem hat er als Schnittstelle für Schrittmotorsteuerungen in low-cost CNC-Anwendungen nach wie vor seine Berechtigung. Dies ist vor allem darauf zurückzuführen, dass im Endgerät kein Protokoll implementiert werden muss, sondern die I/O-Signale direkt verwendet werden können – nach dem sie idealerweise auf einer Interfacekarte (oft auch als Breakout Board bezeichnet) noch etwas aufbereitet wurden. Musste man früher die Pinbelegung ggf. noch durch ein handgelötetes Adapterkabel anpassen, können heute eigentlich alle gängigen Programme auf unterschiedliche Pinbelegungen hin angepasst werden.
Steht kein LPT-Port mehr zur Verfügung oder soll aus Performance-Gründen USB oder LAN eingesetzt werden, ist dies trotzdem ohne Weiteres möglich. Aufgrund der bereits genannten Protokoll-Problematik ist hierfür jedoch ein Controller erforderlich, der zu dem eingesetzten CNC-Programm passt. WinPCNC wird z.B. in der USB-Version gleich mit einem passenden Controller geliefert, der 2 „LPT“-Ports als Schnittstelle zur Elektronik bietet. Mit dem „Smooth-Stepper“ gibt es für Mach3 ähnliche Lösungen sowohl für USB als auch Ethernet. Ausgangsseitig werden auch hier diskrete I/Os in Anlehnung an den LPT-Port verwendet.
Wenn ein Maschinenhersteller also für seine Steuerung auf den LPT-Port setzt, ist das letztlich im Sinne des Anwenders, weil diese nicht an die vom Maschinenbauer präferierte Software gebunden ist. Statt dessen bleibt dem Anwender die freie Wahl, welche Software er einsetzen möchte.

Ausgewählte Eindrücke von der SPS/IPC/Drives

Dezember 2nd, 2012

In diesem Artikel stelle ich einige ausgewählte Eindrücke von der diesjährigen SPS/IPC/Drives vor. Die SPS ist die weltweit größte und bedeutende Messe für Automatisierungs- und Antriebstechnik und findet jährlich in der letzten Novemberwoche in Nürnberg statt. Da ich mich vorwiegend mit dem Thema Antriebstechnik beschäftige, interessiert mich natürlich der „Drives“-Teil der Messe am meisten…

Wer schon immer mal wissen wollte, wie ein Planetengetriebe funktioniert, oder Schwierigkeiten mit der räumlichen Vorstellung der Zahnradbewegungen hat, für den könnte das folgende Video hilfreich sein. Gesehen auf dem Stand der Firma Framo Morat in Halle 1.

Planetengetriebe

Einen interessanten Einblick gewährte der aufgeschnittene EC-Servomotor (die man übrigens auch als BLDC-Motor bezeichnet) auf dem Stand der Firma Ott Antriebstechnik in Halle 1. Von links nach rechts zu sehen: Getriebe, Motor-(wicklung), Haltebremse, Leistungselektronik, Encoder.

Geöffneter BLDC-Motor mit Getriebe und Encoder

Einblick in einen EC-Servomotor

Eine etwas andere Messedemo mit hohem Aufmerksamkeitswert gab es in Halle 3 am Stand der Firma Stöber Antriebstechnik zu sehen. 30 über Servomotoren angetriebene Zahnstangen formen einen „mechanischen“ Spektrumanalyser. Über den Nutzwert eines solchen Aufbaus eines solchen Aufbaus kann man sicherlich streiten, allerdings ist das für eine Messedemo mal eine erfrischende Abwechslung zu den üblichen 2-5 synchronisierten Antrieben, die kollisionsfrei miteinander interagieren.

Spektrumanalyser

Am 28.11. um 17 Uhr wurde am Stand des Vogel-Verlages der erste App-Award für die Automatisierungstechnik vergeben. In drei Kategorien „Corporate“, „Katalog“ und „Technik“ wurde die jeweils beste App ausgezeichnet. Neben dem Votum der Jury fand im Vorfeld ein Leservoting statt, außerdem wurden die Bewertungen in den Appstores berücksichtigt. eDrives, die App zur Antriebsauslegung, konnte sich im Leservoting gegen die durchaus namenhafte Konkurrenz durchsetzen. Leider reichte es in der Kategorie Technik trotzdem nicht ganz für den Sieg, die App von National Instruments hatte in den Augen der Jury die Nase vorn.

App-Award der Elektrotechnik.

Besichtigung der Motorenfertigung bei Schneider Electric in Lahr

September 27th, 2012

Ich hatte letzte Woche die Gelegenheit, die Motorenfertigung bei Schneider Electric in Lahr (ehemals Berger Lahr) zu besichtigen. Berger Lahr entwickelte 1958 den ersten Schrittmotor [1]. Heute werden Schrittmotoren fast ausschließlich in Asien produziert. Umso erstaunlicher ist es, dass in Lahr auch heute noch 3-phasige Schrittmotoren hergestellt werden. Die Fertigungstiefe dürfte über die Jahrzehnte allerdings etwas abgenommen haben. So werden die Blechstanzteile für die Statorpakete nicht mehr in Lahr hergestellt, dort allerdings noch zusammengesetzt und verbacken. Leider war es in der Produktion nicht erlaubt, Fotos zu machen (mit einer Ausnahme, siehe unten). Daher kann ich die Maschine, auf der die Motorwicklungen in den Stator eingebracht werden, hier leider nicht zeigen.

Auch wenn Lahr die Wiege des Schrittmotors ist, werden dort inzwischen überwiegend Servomotoren in allen Leistungsklassen gefertigt. Auch hier ist die Fertigung auf die wesentlichen Schritte beschränkt worden, um wettbewerbsfähig bleiben zu können. Statorgehäuse, Wicklungspakete und elektrische Anbauteile (Bremsen, Drehgeber) sowie Lager und andere mechanische Teile werden zugeliefert. Trotzdem bleiben genügend interessante Prozessschritte übrig, z.B. das Einschrumpfen der Wicklungskörper in das Statorgehäuse, das anschließende Vergießen der Wicklung, das Lackieren der Gehäuse und die Endmontage. Im Bereich der Endmontage durfte ich dann noch ein Bild machen. Zu sehen sind hier einige Servomotoren in größerer Bauform vor dem Einbau des Rotors in den Stator:

Links: Die Rotoren mit Permanentmagneten (unten) sowie vormontierter Bremse, oben ist der Sitz für den Encoder vorbereitet. Rechts: Statorgehäuse, im Inneren sind die Weicheisen-Füße des Wicklungsträgers zu erkennen, die das elektrische Feld zum Rotor leiten.

[1] Geschichte von Berger Lahr, Webseite Schneider Electric

Linearaktuator – der Schrittmotor für lineare Bewegungen

August 21st, 2012

Die meisten Schrittmotoren werden für lineare Verstellbewegungen eingesetzt. Über Zahnriemen oder Gewindespindeln wird die rotatorische Bewegung des Motors in eine translatorische Bewegung der Last umgesetzt. Insbesondere bei relativ kurzen Hüben bietet es sich an, diese Bewegungsumwandlung direkt in den Motor zu integrieren und damit eine Reihe von mechanischen Bauteilen einzusparen. Ergebnis dieser Überlegungen ist der sogenannte Linearaktuator. Er basiert in der Regel auf einem normalen Schrittmotor, dessen Rotor mit einer Hohlwelle ausgestattet ist. Teil dieser Hohlwelle ist die Spindelmutter. Linearaktuatoren sind sowohl auf Basis von billigen Dosenmotoren (CAN-Stack), als auch auf Basis von Hybridschrittmotoren erhältlich.

Zu der Mutter im Rotor wird eine Spindel benötigt. Um eine Linearbewegung erzeugen zu können, muss eine Drehung der Spindel verhindert werden. Hier werden verschiedene Lösungsansätze unterschieden:

– Ohne Verdrehsicherung („non captive“). Die Verdrehsicherung muss durch die Anschlusskonstruktion realisiert werden. Da die Spindel nicht dreht, ist die Anwendung nicht durch die biegekritische Drehzahl limitiert. Je nach Spindellänge können auch mehrere Motoren auf einer Spindel verfahren werden.
– Externe Spindelmutter. Bei dieser Ausführung rotiert die am Schrittmotor fixierte Spindel, die Linearbewegung erfolgt durch die Mutter entlang der Spindel. Der Aufbau entspricht somit am ehesten der klassischen Anwendung mit Motor, Kupplung, Spindel und Mutter. Hier entfallen jedoch die separate Spindellagerung und die Kupplung.
– Mit Verdrehsicherung („captive“). Hier ist die Verdrehsicherung bereits integriert, wodurch sich die Länge des Motorgehäuses deutlich vergrößert. Diese Ausführung ist meist in gestuften Hublängen erhältlich, wobei der Hub typisch unter 100mm liegt.

Aktuator mit externer Mutter

Bild: Linearaktuator mit externer Spindelmutter, hier als kundenspezifische Sonderausführung.

Als Spindeln können sowohl Trapez- sowie Feingewinde und Kugelgewindetriebe zum Einsatz kommen. Je nach Wahl der Spindelsteigung ergeben sich unterschiedliche Auflösungen. Bei kleinen Spindelsteigungen kann der Antrieb auch selbsthemmend sein, was eine Bremse überflüssig macht. Zu beachten ist die maximale Belastbarkeit der Motorlager (Katalogangabe), da diese (anders als bei klassischen Schrittmotoren mit separatem Spindeltrieb) den externen Vorschubkräften standhalten müssen. Insbesondere bei niedrigen Spindelsteigungen definieren die Motorlager die Grenze der Vorschubkraft.

Linearaktuator mit Verdrehsicherung

Bild: Schnittmodell eines Linearaktuators mit integrierter Verdrehsicherung („captive“). Schön zu sehen die Ausführung der Polkappen im Rotor, Nord und Südpole um eine halbe Polteilung versetzt. Vielen Dank an Herrn Spyra von A-drive für die Erlaubnis sein Muster abzulichten.

Linearaktuatoren werden nur von wenigen Herstellern angeboten und sind aufgrund der hohen Funktionsdichte meist nicht 1:1 mit Produkten anderer Hersteller austauschbar, insbesondere die „captive“ Ausführungen mit Verdrehsicherung. Als Optionen sind z.T. Drehgeber (Encoder) oder integrierte Endschalter erhältlich.

Sind hohe Geschwindigkeiten bei kurzem Hub aber vergleichsweise geringer Auflösung gefragt, können klassische Schrittmotoren mit einfachen mechanischen Umwandlungsprinzipien eine Alternative sein. Denkbar sind z.B. ein Kurbeltrieb oder eine Betätigung über Nocken, wobei hier auch Rückstellfedern einsetzbar sind, wenn die Last z.B. nach untern gegen die Gewichtskraft zu betätigen ist. Zu beachten ist allerdings, das bei diesen Antriebsprinzipien kein linearer Zusammenhang mehr zwischen Drehwinkel und Vorschub besteht, so dass bei konstanter Motordrehzahl die Vorschubgeschwindigkeit variiert.

Welche Lösung am besten geeignet ist, ist von Anwendung zu Anwendung verschieden. Die Entscheidung kann sowohl von Kostengesichtspunkten als auch von räumlichen Begrenzungen getrieben sein. Es lohnt sich aber immer, verschiedene Konzepte zu vergleichen…

Literatur zu Schrittmotoren

Juni 8th, 2012

Wer anfängt, sich mit Schrittmotoren zu beschäftigen, findet im Web eine Menge an Quellen, anhand derer man sich einen ersten Überblick verschaffen kann. Zu empfehlen ist zunächst der Wikipedia-Artikel zum Schrittmotor. All denen, die halbwegs englisch sprechen bzw. lesen können, sei die Webseite von Professor Jones ans Herz gelegt. Auch meine Homepage zum Schrittmotor möchte ich nicht unerwähnt lassen…

Was aber, wenn man tiefer in das Thema Schrittmotor einsteigen will? Ältere Semester werden sich erinnern: Richtig, dann könnte man ein Buch zur Hand nehmen. Aber welches? Ich habe im Folgenden eine Übersicht über bekannte und weniger bekannte Bücher rund um den Schrittmotor zusammen gestellt. Allen gemein ist, dass sie schon einige Jahre auf dem Buckel haben. Viele Titel sind außerdem nicht mehr neu erhältlich, sondern nur noch gebraucht über eBay, Amazon und Co.

Neuere Entwicklungen wie Mikroschritt, Stall-detection (Überlasterkennung) oder sensorlose Regelung bleiben bei den Büchern also außen vor. Doch bevor man sich intensiv mit diesen Themen beschäftigt, lohnt es sich, ein gutes Grundverständnis vom Schrittmotor und dem zugrunde liegenden Wirkprinzip aufzubauen. Dann lesen sich die Datenblätter und Applikation Notes der IC-Hersteller deutlich leichter. Und wer dann immer noch nicht genug hat, wird in Unibibliotheken fündig. Hier gibt es tatsächlich eine Reihe neuerer Veröffentlichungen in internationalen Magazinen (z.B. verschiedene IEEE Publikationen) und natürlich Dissertationen, die noch mehr in die Tiefe gehen.

Literaturübersicht:

Übersicht Bücher zum Thema Schrittmotoren

Eine Auswahl an Büchern zu Schrittmotoren und elektrischen Antrieben

Felix Schörlin: “Mit Schrittmotoren steuern, regeln und antreiben”. Franzis, 1995. ISBN: 3-7723-6722-4
Sehr schönes, leicht verständlich geschriebenes Buch für Einsteiger. Betrachtet auch Resonanzen und einfache Versuchsaufbauten. Mit verschiedenen, ausführlich erläuterten Schaltungsbeispielen (TCA3717, L6203, diskrete Endstufen mit MOSFET und IGBTs), die allerdings nicht mehr dem aktuellen Stand entsprechen. Auch für 5-phasige Motoren einsetzbar. Das Controller-Beispiel mit dem ST6225 ist nicht mehr up to date, kann aber leicht auf andere Controller übertragen werden.

Friedrich Prautzsch: „Schrittmotor-Antriebe“. 3. Aufl., Franzis, 1996. ISBN: 3-7723-2183-6
Sehr kompakt, bietet einen schnellen aber nicht zu oberflächlichen Einstieg in das Thema. Elektrotechnik-Grundwissen ist von Vorteil. Nicht mehr ganz auf dem letzten Stand.

Erich Rummenich et al.: „Elektrische Schrittmotoren und –antriebe“. 3. Aufl., Expert 2005. ISBN: 3-8169-2458-1
Inhaltlich nicht mehr auf dem Stand der Technik. Interessant wegen der einfachen Versuchsaufbauten und für historische Betrachtungen

Takashi Kenjo: „Stepping motors and their microprocessor controls“. Oxford Science Publications, 1984. ISBN 0-19-859339-2
Sehr umfangreiches englisches Buch, bietet einen guten Einstieg mit historischem Überblick. Viele interessante Abbildungen von älteren Geräten und Realisierungsbeispielen. Dynamische Betrachtungen incl. der mathematischen Zusammenhänge, Schaltungsbeispiele mit Logiktabellen sowie Versuchsaufbauten. Mit Literaturverzeichnis zu jedem Kapitel

Dierk Schröder: „Elektrische Antriebe – Grundlagen“. 3. Aufl., Springer, 2007. ISBN: 978-3-540-72764-4
Allgemeines Buch zur elektrischen Antriebstechnik mit einem Abschnitt über Schrittmotoren. Umfangreiches Literatur- und Sachverzeichnis

Gert Hagmann: „Leistungselektronik – Grundlagen und Anwendungen in der elektrischen Antriebstechnik“. 3. Aufl., Aula, 2006. ISBN:978-3-89104-700-2
Gutes Grundlagenbuch für alle, die selbst Schaltungen zur Ansteuerung von Motoren entwickeln möchten. Gutes Sachverzeichnis.

Paul Acarnely: “Stepping Motors: A Guide to Theory and Practice”. 4th edition, Institution of Engineering and Technology, 2002. ISBN: 978-0852964170
Englisches Fachbuch. Das Thema Mikroschritt fehlt leider. Sonst sehr detailliert, incl. der zur Beschreibung und Berechnung erforderlichen Mathematik. Weitere Themen: Open und closed loop Betrieb, statische Betrachtung der Momente, Highspeed Betrieb, Resonanzdämpfung. Umfangreiche Literaturverweise.

Handbuch Elektrische Kleinantriebe [Gebundene Ausgabe]
Hans-Dieter Stölting (Herausgeber), Eberhard Kallenbach (Herausgeber). 4. Aufl., Hanser, 2011. ISBN-13: 978-3446423923
Habe ich selbst noch nicht gelesen, sollte aber trotzdem nicht unerwähnt bleiben, weil es gerade in neuer Auflage erschienen ist. Somit besteht die Chance, auch zu neueren Themen Informationen zu finden.

China-Endstufen im Test bei c’t Hardwarehacks

Mai 2nd, 2012

Der c’t Redakteur Carsten Meyer widmet sich in seinem Testbericht auf Heise Hardware-Hacks den inzwischen sehr belieben 3- oder 4-achsigen Schrittmotorendstufen auf Basis des Toshiba TB6560AHQ. Im Test nimmt das Design genauer unter die Lupe und entdeckt einige Ungereimtheiten. Fazit: Wo Licht ist, ist auch Schatten…

Zum Testbericht auf Hardware-Hacks

Schrittmotor im Servo-Betrieb – Closed loop or not so closed?

Januar 18th, 2012

Immer mehr Hersteller bieten Schrittmotoren mit Positionsfeedback (Encoder) und entsprechende Steuerungen an. Grund genug, Vor- und Nachteile dieser Systeme ein wenig unter die Lupe zu nehmen.

Die klassische Anwendungsweise für Schrittmotoren ist der sogenannte „open loop Betrieb“, also der Einsatz ohne Positionsrückmeldung. Durch die hohe Polpaarzahl folgt der Schrittmotor dem extern vorgegebenen Drehfeld präzise, zumindest solange die Drehzahl nicht zu hoch ist und die Last das vom Motor abgegebene Moment nicht überschreitet. Fall das passiert, kommt der Motor aus dem Tritt und verliert Schritte. Und genau davor haben viele Entwickler in industriellen Anwendungen Angst: Was, wenn die Mechanik mit der Zeit schwergängiger wird? Was passiert, wenn der Schrittverlust nicht erkannt wird? Welche Folgefehler können auftreten? Oft wurde dann in der Vergangenheit zu deutlich teureren Servomotoren gegriffen (Anmerkung: Mit Servomotor sind i.A. Synchronmotoren gemeint, die mit mehreren hundert Volt Zwischenkreisspannung betrieben werden).

Inzwischen sind Schrittmotoren mit Encodern, also optischen Drehgeber, günstig und in großer Typenvielfalt erhältlich. Damit wird es möglich, Schrittverluste zu erkennen und den Antrieb entsprechend nachzuführen. Geht man noch einen Schritt weiter, kann ein Schrittmotor wie ein Servomotor betrieben werden, d.h. mit feldorientier Regelung. Der wesentliche Unterschied zum „überwachten“ Schrittmotorbetrieb (manchmal von den Herstellern auch als „semi closed loop“ bezeichnet), liegt in der Ansteuerung der Wicklungen. Ein Servomotor wird vom Regler nur mit so viel Strom beaufschlagt, wie zum Ausgleich der Regelabweichung erforderlich ist. Ein normaler Schrittmotortreiber steuert die Spule hingegen ständig mit vollem Nennstrom an. Die feldorientierte Regelung ist also deutlich energieeffizienter. Hinzu kommt, dass der Regler ständig einen Winkel von 90° elektrisch zwischen Rotor und Drehfeld aufrecht erhält, so dass das maximal mögliche Drehmoment erzeugt wird.

Auf der anderen Seite muss der Anwender aber bei der Inbetriebnahme den Regler geeignet parametrieren. Gute Lösungen bieten hier durch (mehr oder weniger) intelligente, automatische Funktionen zur Regler-Parametrierung Unterstützung an. Letztlich obliegt es aber dem Anwender, für die jeweilige Applikation, d.h. entsprechend der mechanischen Steifigkeit des Systems und der anzutreibenden Last, die geeigneten Regler-Einstellungen zu finden. Ein System mit reiner Positionsüberwachung ist dementsprechend einfacher in der Handhabung, nutzt aber die Vorteile der Positionsrückführung nur teilweise aus.

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder (Quelle: Oriental Motor, Gesammtkatalog PK2-Serie, 2009)

Auch BLDC-Motoren (auch EC- oder bürstenlose Motoren genannt), sind heute preiswert und in vielen Versionen erhältlich. Für sie gilt in Hinblick auf Effizienz und Inbetriebnahme Aufwand das gleiche wie für Schrittmotoren im Servo-Betrieb. Welcher Motortyp am besten geeignet ist, ist von der Anwendung abhängig. Schrittmotoren bieten, ähnlich wie Torquemotoren, den Vorteil, dass sie bei niedrigen Drehzahlen ein verhältnismäßig hohes Drehmoment liefern. Nachteilig ist unter Umständen das ausgeprägte Rastmoment, was aber auch genutzt werden kann, um die Last bei abgeschaltetem Antrieb in Position zu halten. BLDC-Motoren hingegen schaffen aufgrund der niedrigeren Polpaarzahl deutlich höhere Drehzahlen, liefern aber wenig Drehmoment. Wenn also hohes Drehmoment bei niedrigen Drehzahlen gefordert ist, ist der Schrittmotor auch für Servo-Anwendungen die richtige Wahl und kann sogar ein Getriebe überflüssig machen, dass bei Einsatz eines BLDC-Motors erforderlich wäre. Voraussetzung ist ein geeignetes Leistungsteil mit guter Benutzerführung bei der Inbetriebnahme von Antrieb und Regelung und zumindest regelungstechnische Grundkenntnisse beim Anwender.

Experten für Antriebstechnik treffen sich in Nürnberg

November 20th, 2011

In wenigen Tagen ist es wieder soweit: In Nürnberg öffnet mit der SPS/IPC/Drives die wohl größte und bedeutendste Fachmesse für Antriebstechnik und Industrieautomatisierung ihre Pforten. Vom Schrittmotor bis zum Lineardirektantrieb, von der I/O-gesteuerten Lösung bis hin zu den diversen Echtzeit-Feldbussen, sowie von der klassischen SPS bis hin zu modernen, PC-basierten Systemen ist alles vertreten. Auf dem parallel stattfindenden Kongress trifft sich das Who-is-Who der Branche, um über die neusten Entwicklungen und Trends zu diskutieren. Doch neben den Großen der Branche findet man auf der SPS auch viele kleine aber innovative Unternehmen. Es lohnt sich also, schon vorab einen Blick in das Ausstellerverzeichnis zu werfen und den Besuch gut zu planen. Seit diesem Jahr bietet die Messegesellschaft dazu einen interaktiven Hallenplan, auf dem man sich die interessanten Messestände markieren kann.

Die Stimmung auf der Messe ist immer ein guter Indikator für das folgende Geschäftsjahr. So stand die Messe 2009 unter dem Eindruck der Wirtschaftskrise, während man letztes Jahr wieder sehr optimistisch nach vorn blickte. Ich für meinen Teil bin gespannt, wie die Stimmung dieses Jahr ausfällt. Die Anzahl der Aussteller und die zusätzlich belegten Hallen sind jedenfalls als positive Anzeichen zu werten.

Anwendungsmöglichkeiten für Schrittmotoren in der Produktions- und Automatisierungstechnik

August 19th, 2011

Durch Auswahl der für die Anwendung optimalen Schrittmotor-Steuerung lassen sich Schrittmotore deutlich schneller und einfacher in die verschiedensten Anwendungen integrieren. Der folgende Beitrag gibt einen Überblick über die Möglichkeiten und nennt einige Anwendungsbeispiele von der animierten Produktfotografie bis hin zu Drosselklappensteuerungen oder Wickeleinrichtungen.

Schrittmotoren als Ersatz für langsam laufenden Gleichstrom-Getriebemotoren

In vielen Anwendungen werden Antriebe benötigt, die lediglich eine konstante und oft niedrige Drehzahl bereitstellen müssen. Beispiele sind Antriebe für Zuführeinheiten, Band- oder Kettenantriebe für den Produkttransport, Stationen zum Einschleusen von Bauteilen in Montageprozesse usw. Aufgrund der niedrigen Drehzahlen werden hierfür oft Getriebemotoren eingesetzt, vielfach noch mit bürstenbehafteten Gleichstrommotoren. Aufgrund ihrer hohen Polpaarzahl und des vergleichsweise hohen Drehmomentes bieten sich Schrittmotoren als alternative Antriebsform an. Die Vorteile liegen auf der Hand: Besseres Störverhalten (EMC) durch Entfall des Bürstenfeuers und vor allem deutlich niedrigere Ausfallraten, da die verschleißanfälligen Komponenten Getriebe und Bürsten entfallen. Durch den Wegfall des Getriebes ist die Lösung mit Schrittmotor zudem oft auch preiswerter. Dank moderner Ansteuerverfahren mit Mikroschritt stehen Schrittmotoren anderen Antrieben in Hinblick auf das Geräuschverhalten in nichts nach.

Für den einfachen Einsatz in der Anwendung muss allerdings ein Taktsignal für die Schrittmotorsteuerung bereits gestellt werden. Auf Basis des Timer-ICs NE555 kann mit wenigen Bauteilen eine Schaltung aufgebaut werden, die ein über Spindeltrimmer einstellbares Taktsignal erzeugt. Das Bild zeigt den Schaltplan mit dem NE555 in der Grundschaltung als so genannter Multivibrator. Über den Spindeltrimmer kann die Frequenz innerhalb von mindestens einer Dekade verstellt werden. Durch Variation des Kondensators (z.B. Weglassen von C2) kann der Frequenzbereich zusätzlich variiert werden. Eine entsprechende Leerplatine ist über mechapro.de erhältlich. Die gleiche Grundschaltung wurde in der Schrittmotor-Endstufe Tinystep II verwendet (nur in den Ausführungen „plus“ und „Tragschienen-Gehäuse“. Andere Motortreiber enthalten einen Mikrocontroller, der die Ansteuerung der Endstufe übernimmt. Ist ein Controller vorhanden, bietet es sich natürlich an, diesen auch für die Takterzeugung zu verwenden. Die Treiber der DS10-Reihe von LAM bieten so die Möglichkeit, über I/O zwei parametrierbare Frequenzen auszuwählen.

Beschaltung des NE555 als Multivibrator zur Takterzeugung

Bei größeren bewegten Massen oder Bewegungen mit höheren Drehzahlen benötigen Schrittmotoren eine Anlauframpe. Neben umfangreich programmierbaren Treibern (wie z.B. der DS30-Serie von LAM) gibt es Lösungen mit analoger Sollwertvorgabe für die Drehzahl. So kann eine übergeordnete Steuerung direkten Einfluss auf die Drehzahl des Schrittmotors nehmen, ohne Frequenzen bis in den zweistelligen kHz-Bereich erzeugen zu müssen. Die bietet einen Eingang für +/-10V, mit dem die Drehzahl bis 5U/s eingestellt werden kann. Neben den zuvor genannten Anwendungen können Schrittmotoren so auch für Registerregelungen, Wickelvorrichtungen usw. eingesetzt werden.

Vielfältige Möglichkeiten mit frei programmierbaren Schrittmotorsteuerungen

Frei programmierbare Treiber wie die DS30-Serie von LAM ermöglichen den Einsatz von Schrittmotoren für vielfältige Anwendungen, ohne das eine permanente PC-Verbindung oder eine komplexe SPS erforderlich wären. Digitale und analoge Ein- und Ausgänge synchronisieren das interne Programm mit dem Verhalten der Anlage. Um z.B. eine Drosselklappenverstellung abhängig von einem analogen Sollwert zu realisieren, wird in der Steuerung der Wert des analogen Eingangs mit der Sollposition des Antriebs verknüpft. Beim Einsatz in Wickelvorrichtungen kann der Analogwert hingegen zur Anpassung der Geschwindigkeit des Wicklers eingesetzt werden. Zur Steuerung von Drehtellern für die Produktfotografie können z.B. feste Wegstrecken eingestellt werden, die dann entweder über einen Eingang oder voll automatisch ausgelöst werden können. Durch den Einsatz von Wartezeiten und eines Ausgangssignals kann ggf. sogar die Ansteuerung der Kamera integriert werden, so dass nach Ablauf eines Fotoshootings nur noch die Bilder von der Kamera auf einen PC übertragen werden können. Noch komfortabler geht es nur noch durch den Einsatz eines USB-Controllers und einer auf die Anwendung abgestimmten PC-Software…

Falls eine Referenzfahrt oder ein Freigabesignal erforderlich ist, kann dies problemlos über die digitalen Eingänge gelöst werden, während die digitalen Ausgänge z.B. Fehlerzustände, Bereitsignale u.ä. signalisieren können. Zusätzlich steht ein analoger Ausgang zur Verfügung, mit dem z.B. die aktuelle Geschwindigkeit des Motors ausgegeben werden kann. Für alle Eingangswerte und die internen Variablen stehen mathematische Funktionen zur Verfügung, so dass auch komplette Regler realisiert werden können.

Abseits von reinen Schrittmotor-Endstufen mit Takt-/Richtungssignalen erschließen Schrittmotor-Steuerungen mit Zusatzfunktionen ein breites Anwendungsfeld. Ich hoffe, ich konnte Sie mit den vorgestellten Beispielen inspirieren und würde mich über Ergänzungen aus Ihrer beruflichen Praxis freuen.