Einschwingverhalten von Schrittmotoren

Juli 9th, 2013

Um Schrittmotoren in der Anwendung besser verstehen und beurteilen zu können ist es hilfreich, zunächst das Verhalten des Motors bei einem einzelnen Schritt zu betrachten. Auf dieser Basis lassen sich viele Dinge wie z.B. die Vorteile von Halb- und Mikroschritt sowie die Bedeutung der Last und ihrer Ankopplung an den Motor besser nachvollziehen.

Für die in diesem Beitrag behandelten Messungen wurde zur Erfassung der Rotorbewegung ein Encoder mit 5.000 Strichen und TTL-Ausgang verwendet. Mit Hilfe der 4-fach Flankenauswertung lässt sich die Bewegung auf 20.000 Pulse/U auflösen. Bei einem normalen Schrittmotor mit 200 Vollschritten/U entspricht das 100 Pulsen pro Vollschritt.

Der Encoder wurde über eine drehsteife Elastomer-Kupplung direkt an den Motor angekoppelt. Als Testmotor wurde ein Oriental Motor Typ PK268-E2.0B in paralleler Beschaltung eingesetzt. Auf der B-Welle war ein Dämpfer Typ D6CL-6.3F (Massenträgheit J_Dämpfer=18,5*10-6 kg*m², J_Motor=48*10-6 kg*m²) montiert.

Testaufbau, Schrittmotor mit Encoder

Schrittmotor PK268-E2.0B mit Encoder und Dämpfer

Angesteuert wurde der Motor über eine 3-Achs Endstufe „3D-Step“ mit der klassischen L297/L298 Treiber-Kombination bei 2,0A(effektiv), also etwas unterhalb des Nennstroms von 2,8A. Die Erfassung der Encoder-Signale erfolgte über eine Beckhoff-SPS mit einer Taktrate von 2ms.

Bei einem Vollschritt sollte der Motor einen Winkel von 1,8° weiterschalten. Eine erste Messung zeigt, dass der Motor trotz der Belastung durch den Dämpfer und den Encoder dabei deutliche Schwingungen ausfürt. Der Rotor schwingt bis fast 2,8° über und pendelt auf 1,5° zurück, bevor die Schwingung langsam abklingt und nach ca. 10ms in einem Toleranzband von +/- 0,2° ausklingt.

Messergebnis Vollschritt mit Dämpfer

Vollschritt mit Dämpfer

Noch deutlich schlimmer sieht es aus, wenn man den Dämpfer von der B-Welle des Motors entfernt. Das Überschwingen ist mit max. 3,0° von der Amplitude her zwar nur unwesentlich stärker, jedoch lässt sich deutlich erkennen, dass die Dämpfung stark reduziert wird. Es dauert jetzt ca. 25ms, bis der Rotor im selben Toleranzband bleibt wie dies beim ersten Versuch bereits nach 10ms der Fall war.

Messergebnis für Vollschritt ohne Dämpfer

Vollschritt ohne Dämpfer

Nach Umschalten der Endstufe in den (stromkompensierten) Halbschritt und erneuter Montage des Dämpfers ergibt der nächste Versuch die folgende Sprungantwort. Zu beachten ist hier, dass der Motor nach einem Halbschritt im Vergleich zu den vorherigen Versuchen nur den halben Winkel, also 0,9° zurück gelegt hat. Die Schwingung reicht hier von ca. 1,15 bis zurück nach 0,7° und erreicht bereits nach einer Schwingung ein Toleranzband von +/-0,1°. Zur besseren Vergleichbarkeit wurde der Maßstab des Graphen unverändert beibehalten.

Messergebnis für Halbschritt mit Dämpfer

Halbschritt mit Dämpfer

Beim Übergang zu einer kontinuierlichen Drehbewegung wird der Rotor je nach Drehzahl weitergeschaltet, bevor die durch einen einzelnen Schritt angeregte Schwingung vollständig abgeklungen ist. Das zeigt auch die folgende Messung bei ca. 42Hz Halbschritt. Trotzdem führen insbesondere der erste Überschwinger und die stufenweise Bewegung im unteren Drehzahlbereich zu unangenehmen Betriebsgeräuschen.

Messergebnis für eine kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

Kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

In der Anwendung treibt der Motor eine mehr oder weniger steif angekoppelte Last an. Es ist angesichts dieser Messungen leicht nachvollziehbar, dass der Motor mit seiner Schwingneigung leicht Resonanzstellen in der Mechanik anregen kann.

Die Amplitude des Überschwingens hängt direkt mit dem Drehmoment und damit mit dem Motorstrom zusammen. In diesem Versuch wurde der Motor bereits ca. 30% unterhalb seines Nennstroms betrieben. Bei Nennstrom ist also eine noch stärkere Schwingung zu erwarten. Umgekehrt bedeutet dies, dass eine Absenkung des Motorstroms –sofern in der Anwendung entsprechende Drehmomentreseven vorhanden sind- zu einer Reduktion von Schwingungen führen wird.

Wie der Gegenversuch mit dem Dämpfer zeigt, hilft eine steif angekoppelte Last, das Gesamtsystem zu bedämpfen. Auch die Auswahl einer geeigneten Kupplung sowie eine stabile Lastmechanik (geringe Schwingungsneigung) sind Hilfen, um Resonanzprobleme zu vermeiden. Einen deutlichen Vorteil bietet vor allem der Wechsel zum Halbschritt-Modus. Bei Einsatz einer Endstufe mit Drehmoment-Kompensation (also der Erhöhung des Phasenstroms in den Halbschrittpositionen) entsteht durch den Einsatz von Halbschritt kein nennenswerter Drehmomentverlust. Daher und wegen der erhöhten Schwingungsneigung im Vollschritt rate ich grundsätzlich von der Verwendung des Vollschrittbetriebs ab.

Eine weitere Optimierung besteht im Einsatz von Steuerungen mit Mikroschritt und ggf. der Möglichkeit, das beim Schrittmotor besonders ausgeprägte Rastmoment zu kompensieren. Diesem Thema werde ich demnächst einen eigenen Beitrag widmen.

Resonanzen mal anders – Musizieren mit Schrittmotoren

Juni 21st, 2013

Normalerweise sind Resonanzen bei Schrittmotoren unerwünscht. Man kann sich Resonanzeffekte aber auch zu Nutze machen.

Durch das schrittweise weiterschalten des Rotors im Schrittmotor wird die umgebende Mechanik (einschließlich des Stators) zum Schwingen angeregt. Dieser Effekt tritt im Vollschritt Betrieb besonders deutlich auf. Die dabei erzeugten Frequenzen sind abhängig von der Drehzahl des Motors. Die Grundschwingung entspricht der Taktrate, also der Anzahl der Vollschritte pro Umdrehung. Variiert man die Ansteuerung des Motors geschickt, lassen sich mit dem Motor Melodien abspielen. In gewissen Grenzen kann man sogar die Amplitude dynamisch anpassen, wenn man den Phasenstrom variiert.

Einige ausgewählte Beispiele die ich besonders interessant finde habe ich in der nachfolgenden Linksammlung zusammen gestellt:

James Bond theme – 8-stimming mit Diskettenlaufwerken

Smoke on the waters – 8-stimming mit Diskettenlaufwerken

Starwars imperial march

Nochmal imperial march – 8-stimmig und mit Backlight

Depeche Mode – Enjoy the silence

Tetris auf einer CNC-Maschine

Spiegel Online über Musik mit CNC-Fräsen:
http://www.spiegel.de/netzwelt/web/maschinenmusik-so-krass-roehrt-die-cnc-fraese-a-620661.html

LPT, USB und Ethernet – Welche Schnittstelle für Desktop-CNC Maschinen?

Mai 18th, 2013

In der Zeitschrift „Hardware Hacks“ Ausgabe 1/2013 wurde im Rahmen eines Tests (S. 30ff) von Desktop-CNC Maschinen kritisiert, dass bei vielen der getesteten Maschinen noch der LPT-Port (Parallelport) als Schnittstelle zum PC verwendet wird. Warum das meiner Meinung nach trotzdem sinnvoll ist, will ich nachfolgend erläutern:
Es stimmt zwar, dass der Druckerport (LPT) im PC längst obsolet ist. Trotzdem hat er als Schnittstelle für Schrittmotorsteuerungen in low-cost CNC-Anwendungen nach wie vor seine Berechtigung. Dies ist vor allem darauf zurückzuführen, dass im Endgerät kein Protokoll implementiert werden muss, sondern die I/O-Signale direkt verwendet werden können – nach dem sie idealerweise auf einer Interfacekarte (oft auch als Breakout Board bezeichnet) noch etwas aufbereitet wurden. Musste man früher die Pinbelegung ggf. noch durch ein handgelötetes Adapterkabel anpassen, können heute eigentlich alle gängigen Programme auf unterschiedliche Pinbelegungen hin angepasst werden.
Steht kein LPT-Port mehr zur Verfügung oder soll aus Performance-Gründen USB oder LAN eingesetzt werden, ist dies trotzdem ohne Weiteres möglich. Aufgrund der bereits genannten Protokoll-Problematik ist hierfür jedoch ein Controller erforderlich, der zu dem eingesetzten CNC-Programm passt. WinPCNC wird z.B. in der USB-Version gleich mit einem passenden Controller geliefert, der 2 „LPT“-Ports als Schnittstelle zur Elektronik bietet. Mit dem „Smooth-Stepper“ gibt es für Mach3 ähnliche Lösungen sowohl für USB als auch Ethernet. Ausgangsseitig werden auch hier diskrete I/Os in Anlehnung an den LPT-Port verwendet.
Wenn ein Maschinenhersteller also für seine Steuerung auf den LPT-Port setzt, ist das letztlich im Sinne des Anwenders, weil diese nicht an die vom Maschinenbauer präferierte Software gebunden ist. Statt dessen bleibt dem Anwender die freie Wahl, welche Software er einsetzen möchte.

Ausgewählte Eindrücke von der SPS/IPC/Drives

Dezember 2nd, 2012

In diesem Artikel stelle ich einige ausgewählte Eindrücke von der diesjährigen SPS/IPC/Drives vor. Die SPS ist die weltweit größte und bedeutende Messe für Automatisierungs- und Antriebstechnik und findet jährlich in der letzten Novemberwoche in Nürnberg statt. Da ich mich vorwiegend mit dem Thema Antriebstechnik beschäftige, interessiert mich natürlich der „Drives“-Teil der Messe am meisten…

Wer schon immer mal wissen wollte, wie ein Planetengetriebe funktioniert, oder Schwierigkeiten mit der räumlichen Vorstellung der Zahnradbewegungen hat, für den könnte das folgende Video hilfreich sein. Gesehen auf dem Stand der Firma Framo Morat in Halle 1.

Planetengetriebe

Einen interessanten Einblick gewährte der aufgeschnittene EC-Servomotor (die man übrigens auch als BLDC-Motor bezeichnet) auf dem Stand der Firma Ott Antriebstechnik in Halle 1. Von links nach rechts zu sehen: Getriebe, Motor-(wicklung), Haltebremse, Leistungselektronik, Encoder.

Geöffneter BLDC-Motor mit Getriebe und Encoder

Einblick in einen EC-Servomotor

Eine etwas andere Messedemo mit hohem Aufmerksamkeitswert gab es in Halle 3 am Stand der Firma Stöber Antriebstechnik zu sehen. 30 über Servomotoren angetriebene Zahnstangen formen einen „mechanischen“ Spektrumanalyser. Über den Nutzwert eines solchen Aufbaus eines solchen Aufbaus kann man sicherlich streiten, allerdings ist das für eine Messedemo mal eine erfrischende Abwechslung zu den üblichen 2-5 synchronisierten Antrieben, die kollisionsfrei miteinander interagieren.

Spektrumanalyser

Am 28.11. um 17 Uhr wurde am Stand des Vogel-Verlages der erste App-Award für die Automatisierungstechnik vergeben. In drei Kategorien „Corporate“, „Katalog“ und „Technik“ wurde die jeweils beste App ausgezeichnet. Neben dem Votum der Jury fand im Vorfeld ein Leservoting statt, außerdem wurden die Bewertungen in den Appstores berücksichtigt. eDrives, die App zur Antriebsauslegung, konnte sich im Leservoting gegen die durchaus namenhafte Konkurrenz durchsetzen. Leider reichte es in der Kategorie Technik trotzdem nicht ganz für den Sieg, die App von National Instruments hatte in den Augen der Jury die Nase vorn.

App-Award der Elektrotechnik.

Besichtigung der Motorenfertigung bei Schneider Electric in Lahr

September 27th, 2012

Ich hatte letzte Woche die Gelegenheit, die Motorenfertigung bei Schneider Electric in Lahr (ehemals Berger Lahr) zu besichtigen. Berger Lahr entwickelte 1958 den ersten Schrittmotor [1]. Heute werden Schrittmotoren fast ausschließlich in Asien produziert. Umso erstaunlicher ist es, dass in Lahr auch heute noch 3-phasige Schrittmotoren hergestellt werden. Die Fertigungstiefe dürfte über die Jahrzehnte allerdings etwas abgenommen haben. So werden die Blechstanzteile für die Statorpakete nicht mehr in Lahr hergestellt, dort allerdings noch zusammengesetzt und verbacken. Leider war es in der Produktion nicht erlaubt, Fotos zu machen (mit einer Ausnahme, siehe unten). Daher kann ich die Maschine, auf der die Motorwicklungen in den Stator eingebracht werden, hier leider nicht zeigen.

Auch wenn Lahr die Wiege des Schrittmotors ist, werden dort inzwischen überwiegend Servomotoren in allen Leistungsklassen gefertigt. Auch hier ist die Fertigung auf die wesentlichen Schritte beschränkt worden, um wettbewerbsfähig bleiben zu können. Statorgehäuse, Wicklungspakete und elektrische Anbauteile (Bremsen, Drehgeber) sowie Lager und andere mechanische Teile werden zugeliefert. Trotzdem bleiben genügend interessante Prozessschritte übrig, z.B. das Einschrumpfen der Wicklungskörper in das Statorgehäuse, das anschließende Vergießen der Wicklung, das Lackieren der Gehäuse und die Endmontage. Im Bereich der Endmontage durfte ich dann noch ein Bild machen. Zu sehen sind hier einige Servomotoren in größerer Bauform vor dem Einbau des Rotors in den Stator:

Links: Die Rotoren mit Permanentmagneten (unten) sowie vormontierter Bremse, oben ist der Sitz für den Encoder vorbereitet. Rechts: Statorgehäuse, im Inneren sind die Weicheisen-Füße des Wicklungsträgers zu erkennen, die das elektrische Feld zum Rotor leiten.

[1] Geschichte von Berger Lahr, Webseite Schneider Electric

Linearaktuator – der Schrittmotor für lineare Bewegungen

August 21st, 2012

Die meisten Schrittmotoren werden für lineare Verstellbewegungen eingesetzt. Über Zahnriemen oder Gewindespindeln wird die rotatorische Bewegung des Motors in eine translatorische Bewegung der Last umgesetzt. Insbesondere bei relativ kurzen Hüben bietet es sich an, diese Bewegungsumwandlung direkt in den Motor zu integrieren und damit eine Reihe von mechanischen Bauteilen einzusparen. Ergebnis dieser Überlegungen ist der sogenannte Linearaktuator. Er basiert in der Regel auf einem normalen Schrittmotor, dessen Rotor mit einer Hohlwelle ausgestattet ist. Teil dieser Hohlwelle ist die Spindelmutter. Linearaktuatoren sind sowohl auf Basis von billigen Dosenmotoren (CAN-Stack), als auch auf Basis von Hybridschrittmotoren erhältlich.

Zu der Mutter im Rotor wird eine Spindel benötigt. Um eine Linearbewegung erzeugen zu können, muss eine Drehung der Spindel verhindert werden. Hier werden verschiedene Lösungsansätze unterschieden:

– Ohne Verdrehsicherung („non captive“). Die Verdrehsicherung muss durch die Anschlusskonstruktion realisiert werden. Da die Spindel nicht dreht, ist die Anwendung nicht durch die biegekritische Drehzahl limitiert. Je nach Spindellänge können auch mehrere Motoren auf einer Spindel verfahren werden.
– Externe Spindelmutter. Bei dieser Ausführung rotiert die am Schrittmotor fixierte Spindel, die Linearbewegung erfolgt durch die Mutter entlang der Spindel. Der Aufbau entspricht somit am ehesten der klassischen Anwendung mit Motor, Kupplung, Spindel und Mutter. Hier entfallen jedoch die separate Spindellagerung und die Kupplung.
– Mit Verdrehsicherung („captive“). Hier ist die Verdrehsicherung bereits integriert, wodurch sich die Länge des Motorgehäuses deutlich vergrößert. Diese Ausführung ist meist in gestuften Hublängen erhältlich, wobei der Hub typisch unter 100mm liegt.

Aktuator mit externer Mutter

Bild: Linearaktuator mit externer Spindelmutter, hier als kundenspezifische Sonderausführung.

Als Spindeln können sowohl Trapez- sowie Feingewinde und Kugelgewindetriebe zum Einsatz kommen. Je nach Wahl der Spindelsteigung ergeben sich unterschiedliche Auflösungen. Bei kleinen Spindelsteigungen kann der Antrieb auch selbsthemmend sein, was eine Bremse überflüssig macht. Zu beachten ist die maximale Belastbarkeit der Motorlager (Katalogangabe), da diese (anders als bei klassischen Schrittmotoren mit separatem Spindeltrieb) den externen Vorschubkräften standhalten müssen. Insbesondere bei niedrigen Spindelsteigungen definieren die Motorlager die Grenze der Vorschubkraft.

Linearaktuator mit Verdrehsicherung

Bild: Schnittmodell eines Linearaktuators mit integrierter Verdrehsicherung („captive“). Schön zu sehen die Ausführung der Polkappen im Rotor, Nord und Südpole um eine halbe Polteilung versetzt. Vielen Dank an Herrn Spyra von A-drive für die Erlaubnis sein Muster abzulichten.

Linearaktuatoren werden nur von wenigen Herstellern angeboten und sind aufgrund der hohen Funktionsdichte meist nicht 1:1 mit Produkten anderer Hersteller austauschbar, insbesondere die „captive“ Ausführungen mit Verdrehsicherung. Als Optionen sind z.T. Drehgeber (Encoder) oder integrierte Endschalter erhältlich.

Sind hohe Geschwindigkeiten bei kurzem Hub aber vergleichsweise geringer Auflösung gefragt, können klassische Schrittmotoren mit einfachen mechanischen Umwandlungsprinzipien eine Alternative sein. Denkbar sind z.B. ein Kurbeltrieb oder eine Betätigung über Nocken, wobei hier auch Rückstellfedern einsetzbar sind, wenn die Last z.B. nach untern gegen die Gewichtskraft zu betätigen ist. Zu beachten ist allerdings, das bei diesen Antriebsprinzipien kein linearer Zusammenhang mehr zwischen Drehwinkel und Vorschub besteht, so dass bei konstanter Motordrehzahl die Vorschubgeschwindigkeit variiert.

Welche Lösung am besten geeignet ist, ist von Anwendung zu Anwendung verschieden. Die Entscheidung kann sowohl von Kostengesichtspunkten als auch von räumlichen Begrenzungen getrieben sein. Es lohnt sich aber immer, verschiedene Konzepte zu vergleichen…

Literatur zu Schrittmotoren

Juni 8th, 2012

Wer anfängt, sich mit Schrittmotoren zu beschäftigen, findet im Web eine Menge an Quellen, anhand derer man sich einen ersten Überblick verschaffen kann. Zu empfehlen ist zunächst der Wikipedia-Artikel zum Schrittmotor. All denen, die halbwegs englisch sprechen bzw. lesen können, sei die Webseite von Professor Jones ans Herz gelegt. Auch meine Homepage zum Schrittmotor möchte ich nicht unerwähnt lassen…

Was aber, wenn man tiefer in das Thema Schrittmotor einsteigen will? Ältere Semester werden sich erinnern: Richtig, dann könnte man ein Buch zur Hand nehmen. Aber welches? Ich habe im Folgenden eine Übersicht über bekannte und weniger bekannte Bücher rund um den Schrittmotor zusammen gestellt. Allen gemein ist, dass sie schon einige Jahre auf dem Buckel haben. Viele Titel sind außerdem nicht mehr neu erhältlich, sondern nur noch gebraucht über eBay, Amazon und Co.

Neuere Entwicklungen wie Mikroschritt, Stall-detection (Überlasterkennung) oder sensorlose Regelung bleiben bei den Büchern also außen vor. Doch bevor man sich intensiv mit diesen Themen beschäftigt, lohnt es sich, ein gutes Grundverständnis vom Schrittmotor und dem zugrunde liegenden Wirkprinzip aufzubauen. Dann lesen sich die Datenblätter und Applikation Notes der IC-Hersteller deutlich leichter. Und wer dann immer noch nicht genug hat, wird in Unibibliotheken fündig. Hier gibt es tatsächlich eine Reihe neuerer Veröffentlichungen in internationalen Magazinen (z.B. verschiedene IEEE Publikationen) und natürlich Dissertationen, die noch mehr in die Tiefe gehen.

Literaturübersicht:

Übersicht Bücher zum Thema Schrittmotoren

Eine Auswahl an Büchern zu Schrittmotoren und elektrischen Antrieben

Felix Schörlin: “Mit Schrittmotoren steuern, regeln und antreiben”. Franzis, 1995. ISBN: 3-7723-6722-4
Sehr schönes, leicht verständlich geschriebenes Buch für Einsteiger. Betrachtet auch Resonanzen und einfache Versuchsaufbauten. Mit verschiedenen, ausführlich erläuterten Schaltungsbeispielen (TCA3717, L6203, diskrete Endstufen mit MOSFET und IGBTs), die allerdings nicht mehr dem aktuellen Stand entsprechen. Auch für 5-phasige Motoren einsetzbar. Das Controller-Beispiel mit dem ST6225 ist nicht mehr up to date, kann aber leicht auf andere Controller übertragen werden.

Friedrich Prautzsch: „Schrittmotor-Antriebe“. 3. Aufl., Franzis, 1996. ISBN: 3-7723-2183-6
Sehr kompakt, bietet einen schnellen aber nicht zu oberflächlichen Einstieg in das Thema. Elektrotechnik-Grundwissen ist von Vorteil. Nicht mehr ganz auf dem letzten Stand.

Erich Rummenich et al.: „Elektrische Schrittmotoren und –antriebe“. 3. Aufl., Expert 2005. ISBN: 3-8169-2458-1
Inhaltlich nicht mehr auf dem Stand der Technik. Interessant wegen der einfachen Versuchsaufbauten und für historische Betrachtungen

Takashi Kenjo: „Stepping motors and their microprocessor controls“. Oxford Science Publications, 1984. ISBN 0-19-859339-2
Sehr umfangreiches englisches Buch, bietet einen guten Einstieg mit historischem Überblick. Viele interessante Abbildungen von älteren Geräten und Realisierungsbeispielen. Dynamische Betrachtungen incl. der mathematischen Zusammenhänge, Schaltungsbeispiele mit Logiktabellen sowie Versuchsaufbauten. Mit Literaturverzeichnis zu jedem Kapitel

Dierk Schröder: „Elektrische Antriebe – Grundlagen“. 3. Aufl., Springer, 2007. ISBN: 978-3-540-72764-4
Allgemeines Buch zur elektrischen Antriebstechnik mit einem Abschnitt über Schrittmotoren. Umfangreiches Literatur- und Sachverzeichnis

Gert Hagmann: „Leistungselektronik – Grundlagen und Anwendungen in der elektrischen Antriebstechnik“. 3. Aufl., Aula, 2006. ISBN:978-3-89104-700-2
Gutes Grundlagenbuch für alle, die selbst Schaltungen zur Ansteuerung von Motoren entwickeln möchten. Gutes Sachverzeichnis.

Paul Acarnely: “Stepping Motors: A Guide to Theory and Practice”. 4th edition, Institution of Engineering and Technology, 2002. ISBN: 978-0852964170
Englisches Fachbuch. Das Thema Mikroschritt fehlt leider. Sonst sehr detailliert, incl. der zur Beschreibung und Berechnung erforderlichen Mathematik. Weitere Themen: Open und closed loop Betrieb, statische Betrachtung der Momente, Highspeed Betrieb, Resonanzdämpfung. Umfangreiche Literaturverweise.

Handbuch Elektrische Kleinantriebe [Gebundene Ausgabe]
Hans-Dieter Stölting (Herausgeber), Eberhard Kallenbach (Herausgeber). 4. Aufl., Hanser, 2011. ISBN-13: 978-3446423923
Habe ich selbst noch nicht gelesen, sollte aber trotzdem nicht unerwähnt bleiben, weil es gerade in neuer Auflage erschienen ist. Somit besteht die Chance, auch zu neueren Themen Informationen zu finden.

China-Endstufen im Test bei c’t Hardwarehacks

Mai 2nd, 2012

Der c’t Redakteur Carsten Meyer widmet sich in seinem Testbericht auf Heise Hardware-Hacks den inzwischen sehr belieben 3- oder 4-achsigen Schrittmotorendstufen auf Basis des Toshiba TB6560AHQ. Im Test nimmt das Design genauer unter die Lupe und entdeckt einige Ungereimtheiten. Fazit: Wo Licht ist, ist auch Schatten…

Zum Testbericht auf Hardware-Hacks

Schrittmotor im Servo-Betrieb – Closed loop or not so closed?

Januar 18th, 2012

Immer mehr Hersteller bieten Schrittmotoren mit Positionsfeedback (Encoder) und entsprechende Steuerungen an. Grund genug, Vor- und Nachteile dieser Systeme ein wenig unter die Lupe zu nehmen.

Die klassische Anwendungsweise für Schrittmotoren ist der sogenannte „open loop Betrieb“, also der Einsatz ohne Positionsrückmeldung. Durch die hohe Polpaarzahl folgt der Schrittmotor dem extern vorgegebenen Drehfeld präzise, zumindest solange die Drehzahl nicht zu hoch ist und die Last das vom Motor abgegebene Moment nicht überschreitet. Fall das passiert, kommt der Motor aus dem Tritt und verliert Schritte. Und genau davor haben viele Entwickler in industriellen Anwendungen Angst: Was, wenn die Mechanik mit der Zeit schwergängiger wird? Was passiert, wenn der Schrittverlust nicht erkannt wird? Welche Folgefehler können auftreten? Oft wurde dann in der Vergangenheit zu deutlich teureren Servomotoren gegriffen (Anmerkung: Mit Servomotor sind i.A. Synchronmotoren gemeint, die mit mehreren hundert Volt Zwischenkreisspannung betrieben werden).

Inzwischen sind Schrittmotoren mit Encodern, also optischen Drehgeber, günstig und in großer Typenvielfalt erhältlich. Damit wird es möglich, Schrittverluste zu erkennen und den Antrieb entsprechend nachzuführen. Geht man noch einen Schritt weiter, kann ein Schrittmotor wie ein Servomotor betrieben werden, d.h. mit feldorientier Regelung. Der wesentliche Unterschied zum „überwachten“ Schrittmotorbetrieb (manchmal von den Herstellern auch als „semi closed loop“ bezeichnet), liegt in der Ansteuerung der Wicklungen. Ein Servomotor wird vom Regler nur mit so viel Strom beaufschlagt, wie zum Ausgleich der Regelabweichung erforderlich ist. Ein normaler Schrittmotortreiber steuert die Spule hingegen ständig mit vollem Nennstrom an. Die feldorientierte Regelung ist also deutlich energieeffizienter. Hinzu kommt, dass der Regler ständig einen Winkel von 90° elektrisch zwischen Rotor und Drehfeld aufrecht erhält, so dass das maximal mögliche Drehmoment erzeugt wird.

Auf der anderen Seite muss der Anwender aber bei der Inbetriebnahme den Regler geeignet parametrieren. Gute Lösungen bieten hier durch (mehr oder weniger) intelligente, automatische Funktionen zur Regler-Parametrierung Unterstützung an. Letztlich obliegt es aber dem Anwender, für die jeweilige Applikation, d.h. entsprechend der mechanischen Steifigkeit des Systems und der anzutreibenden Last, die geeigneten Regler-Einstellungen zu finden. Ein System mit reiner Positionsüberwachung ist dementsprechend einfacher in der Handhabung, nutzt aber die Vorteile der Positionsrückführung nur teilweise aus.

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder (Quelle: Oriental Motor, Gesammtkatalog PK2-Serie, 2009)

Auch BLDC-Motoren (auch EC- oder bürstenlose Motoren genannt), sind heute preiswert und in vielen Versionen erhältlich. Für sie gilt in Hinblick auf Effizienz und Inbetriebnahme Aufwand das gleiche wie für Schrittmotoren im Servo-Betrieb. Welcher Motortyp am besten geeignet ist, ist von der Anwendung abhängig. Schrittmotoren bieten, ähnlich wie Torquemotoren, den Vorteil, dass sie bei niedrigen Drehzahlen ein verhältnismäßig hohes Drehmoment liefern. Nachteilig ist unter Umständen das ausgeprägte Rastmoment, was aber auch genutzt werden kann, um die Last bei abgeschaltetem Antrieb in Position zu halten. BLDC-Motoren hingegen schaffen aufgrund der niedrigeren Polpaarzahl deutlich höhere Drehzahlen, liefern aber wenig Drehmoment. Wenn also hohes Drehmoment bei niedrigen Drehzahlen gefordert ist, ist der Schrittmotor auch für Servo-Anwendungen die richtige Wahl und kann sogar ein Getriebe überflüssig machen, dass bei Einsatz eines BLDC-Motors erforderlich wäre. Voraussetzung ist ein geeignetes Leistungsteil mit guter Benutzerführung bei der Inbetriebnahme von Antrieb und Regelung und zumindest regelungstechnische Grundkenntnisse beim Anwender.

Experten für Antriebstechnik treffen sich in Nürnberg

November 20th, 2011

In wenigen Tagen ist es wieder soweit: In Nürnberg öffnet mit der SPS/IPC/Drives die wohl größte und bedeutendste Fachmesse für Antriebstechnik und Industrieautomatisierung ihre Pforten. Vom Schrittmotor bis zum Lineardirektantrieb, von der I/O-gesteuerten Lösung bis hin zu den diversen Echtzeit-Feldbussen, sowie von der klassischen SPS bis hin zu modernen, PC-basierten Systemen ist alles vertreten. Auf dem parallel stattfindenden Kongress trifft sich das Who-is-Who der Branche, um über die neusten Entwicklungen und Trends zu diskutieren. Doch neben den Großen der Branche findet man auf der SPS auch viele kleine aber innovative Unternehmen. Es lohnt sich also, schon vorab einen Blick in das Ausstellerverzeichnis zu werfen und den Besuch gut zu planen. Seit diesem Jahr bietet die Messegesellschaft dazu einen interaktiven Hallenplan, auf dem man sich die interessanten Messestände markieren kann.

Die Stimmung auf der Messe ist immer ein guter Indikator für das folgende Geschäftsjahr. So stand die Messe 2009 unter dem Eindruck der Wirtschaftskrise, während man letztes Jahr wieder sehr optimistisch nach vorn blickte. Ich für meinen Teil bin gespannt, wie die Stimmung dieses Jahr ausfällt. Die Anzahl der Aussteller und die zusätzlich belegten Hallen sind jedenfalls als positive Anzeichen zu werten.