Archive for the ‘Anwendungshinweise’ Category

Linearaktuator – der Schrittmotor für lineare Bewegungen

Dienstag, August 21st, 2012

Die meisten Schrittmotoren werden für lineare Verstellbewegungen eingesetzt. Über Zahnriemen oder Gewindespindeln wird die rotatorische Bewegung des Motors in eine translatorische Bewegung der Last umgesetzt. Insbesondere bei relativ kurzen Hüben bietet es sich an, diese Bewegungsumwandlung direkt in den Motor zu integrieren und damit eine Reihe von mechanischen Bauteilen einzusparen. Ergebnis dieser Überlegungen ist der sogenannte Linearaktuator. Er basiert in der Regel auf einem normalen Schrittmotor, dessen Rotor mit einer Hohlwelle ausgestattet ist. Teil dieser Hohlwelle ist die Spindelmutter. Linearaktuatoren sind sowohl auf Basis von billigen Dosenmotoren (CAN-Stack), als auch auf Basis von Hybridschrittmotoren erhältlich.

Zu der Mutter im Rotor wird eine Spindel benötigt. Um eine Linearbewegung erzeugen zu können, muss eine Drehung der Spindel verhindert werden. Hier werden verschiedene Lösungsansätze unterschieden:

– Ohne Verdrehsicherung („non captive“). Die Verdrehsicherung muss durch die Anschlusskonstruktion realisiert werden. Da die Spindel nicht dreht, ist die Anwendung nicht durch die biegekritische Drehzahl limitiert. Je nach Spindellänge können auch mehrere Motoren auf einer Spindel verfahren werden.
– Externe Spindelmutter. Bei dieser Ausführung rotiert die am Schrittmotor fixierte Spindel, die Linearbewegung erfolgt durch die Mutter entlang der Spindel. Der Aufbau entspricht somit am ehesten der klassischen Anwendung mit Motor, Kupplung, Spindel und Mutter. Hier entfallen jedoch die separate Spindellagerung und die Kupplung.
– Mit Verdrehsicherung („captive“). Hier ist die Verdrehsicherung bereits integriert, wodurch sich die Länge des Motorgehäuses deutlich vergrößert. Diese Ausführung ist meist in gestuften Hublängen erhältlich, wobei der Hub typisch unter 100mm liegt.

Aktuator mit externer Mutter

Bild: Linearaktuator mit externer Spindelmutter, hier als kundenspezifische Sonderausführung.

Als Spindeln können sowohl Trapez- sowie Feingewinde und Kugelgewindetriebe zum Einsatz kommen. Je nach Wahl der Spindelsteigung ergeben sich unterschiedliche Auflösungen. Bei kleinen Spindelsteigungen kann der Antrieb auch selbsthemmend sein, was eine Bremse überflüssig macht. Zu beachten ist die maximale Belastbarkeit der Motorlager (Katalogangabe), da diese (anders als bei klassischen Schrittmotoren mit separatem Spindeltrieb) den externen Vorschubkräften standhalten müssen. Insbesondere bei niedrigen Spindelsteigungen definieren die Motorlager die Grenze der Vorschubkraft.

Linearaktuator mit Verdrehsicherung

Bild: Schnittmodell eines Linearaktuators mit integrierter Verdrehsicherung („captive“). Schön zu sehen die Ausführung der Polkappen im Rotor, Nord und Südpole um eine halbe Polteilung versetzt. Vielen Dank an Herrn Spyra von A-drive für die Erlaubnis sein Muster abzulichten.

Linearaktuatoren werden nur von wenigen Herstellern angeboten und sind aufgrund der hohen Funktionsdichte meist nicht 1:1 mit Produkten anderer Hersteller austauschbar, insbesondere die „captive“ Ausführungen mit Verdrehsicherung. Als Optionen sind z.T. Drehgeber (Encoder) oder integrierte Endschalter erhältlich.

Sind hohe Geschwindigkeiten bei kurzem Hub aber vergleichsweise geringer Auflösung gefragt, können klassische Schrittmotoren mit einfachen mechanischen Umwandlungsprinzipien eine Alternative sein. Denkbar sind z.B. ein Kurbeltrieb oder eine Betätigung über Nocken, wobei hier auch Rückstellfedern einsetzbar sind, wenn die Last z.B. nach untern gegen die Gewichtskraft zu betätigen ist. Zu beachten ist allerdings, das bei diesen Antriebsprinzipien kein linearer Zusammenhang mehr zwischen Drehwinkel und Vorschub besteht, so dass bei konstanter Motordrehzahl die Vorschubgeschwindigkeit variiert.

Welche Lösung am besten geeignet ist, ist von Anwendung zu Anwendung verschieden. Die Entscheidung kann sowohl von Kostengesichtspunkten als auch von räumlichen Begrenzungen getrieben sein. Es lohnt sich aber immer, verschiedene Konzepte zu vergleichen…

Anwendungsmöglichkeiten für Schrittmotoren in der Produktions- und Automatisierungstechnik

Freitag, August 19th, 2011

Durch Auswahl der für die Anwendung optimalen Schrittmotor-Steuerung lassen sich Schrittmotore deutlich schneller und einfacher in die verschiedensten Anwendungen integrieren. Der folgende Beitrag gibt einen Überblick über die Möglichkeiten und nennt einige Anwendungsbeispiele von der animierten Produktfotografie bis hin zu Drosselklappensteuerungen oder Wickeleinrichtungen.

Schrittmotoren als Ersatz für langsam laufenden Gleichstrom-Getriebemotoren

In vielen Anwendungen werden Antriebe benötigt, die lediglich eine konstante und oft niedrige Drehzahl bereitstellen müssen. Beispiele sind Antriebe für Zuführeinheiten, Band- oder Kettenantriebe für den Produkttransport, Stationen zum Einschleusen von Bauteilen in Montageprozesse usw. Aufgrund der niedrigen Drehzahlen werden hierfür oft Getriebemotoren eingesetzt, vielfach noch mit bürstenbehafteten Gleichstrommotoren. Aufgrund ihrer hohen Polpaarzahl und des vergleichsweise hohen Drehmomentes bieten sich Schrittmotoren als alternative Antriebsform an. Die Vorteile liegen auf der Hand: Besseres Störverhalten (EMC) durch Entfall des Bürstenfeuers und vor allem deutlich niedrigere Ausfallraten, da die verschleißanfälligen Komponenten Getriebe und Bürsten entfallen. Durch den Wegfall des Getriebes ist die Lösung mit Schrittmotor zudem oft auch preiswerter. Dank moderner Ansteuerverfahren mit Mikroschritt stehen Schrittmotoren anderen Antrieben in Hinblick auf das Geräuschverhalten in nichts nach.

Für den einfachen Einsatz in der Anwendung muss allerdings ein Taktsignal für die Schrittmotorsteuerung bereits gestellt werden. Auf Basis des Timer-ICs NE555 kann mit wenigen Bauteilen eine Schaltung aufgebaut werden, die ein über Spindeltrimmer einstellbares Taktsignal erzeugt. Das Bild zeigt den Schaltplan mit dem NE555 in der Grundschaltung als so genannter Multivibrator. Über den Spindeltrimmer kann die Frequenz innerhalb von mindestens einer Dekade verstellt werden. Durch Variation des Kondensators (z.B. Weglassen von C2) kann der Frequenzbereich zusätzlich variiert werden. Eine entsprechende Leerplatine ist über mechapro.de erhältlich. Die gleiche Grundschaltung wurde in der Schrittmotor-Endstufe Tinystep II verwendet (nur in den Ausführungen „plus“ und „Tragschienen-Gehäuse“. Andere Motortreiber enthalten einen Mikrocontroller, der die Ansteuerung der Endstufe übernimmt. Ist ein Controller vorhanden, bietet es sich natürlich an, diesen auch für die Takterzeugung zu verwenden. Die Treiber der DS10-Reihe von LAM bieten so die Möglichkeit, über I/O zwei parametrierbare Frequenzen auszuwählen.

Beschaltung des NE555 als Multivibrator zur Takterzeugung

Bei größeren bewegten Massen oder Bewegungen mit höheren Drehzahlen benötigen Schrittmotoren eine Anlauframpe. Neben umfangreich programmierbaren Treibern (wie z.B. der DS30-Serie von LAM) gibt es Lösungen mit analoger Sollwertvorgabe für die Drehzahl. So kann eine übergeordnete Steuerung direkten Einfluss auf die Drehzahl des Schrittmotors nehmen, ohne Frequenzen bis in den zweistelligen kHz-Bereich erzeugen zu müssen. Die bietet einen Eingang für +/-10V, mit dem die Drehzahl bis 5U/s eingestellt werden kann. Neben den zuvor genannten Anwendungen können Schrittmotoren so auch für Registerregelungen, Wickelvorrichtungen usw. eingesetzt werden.

Vielfältige Möglichkeiten mit frei programmierbaren Schrittmotorsteuerungen

Frei programmierbare Treiber wie die DS30-Serie von LAM ermöglichen den Einsatz von Schrittmotoren für vielfältige Anwendungen, ohne das eine permanente PC-Verbindung oder eine komplexe SPS erforderlich wären. Digitale und analoge Ein- und Ausgänge synchronisieren das interne Programm mit dem Verhalten der Anlage. Um z.B. eine Drosselklappenverstellung abhängig von einem analogen Sollwert zu realisieren, wird in der Steuerung der Wert des analogen Eingangs mit der Sollposition des Antriebs verknüpft. Beim Einsatz in Wickelvorrichtungen kann der Analogwert hingegen zur Anpassung der Geschwindigkeit des Wicklers eingesetzt werden. Zur Steuerung von Drehtellern für die Produktfotografie können z.B. feste Wegstrecken eingestellt werden, die dann entweder über einen Eingang oder voll automatisch ausgelöst werden können. Durch den Einsatz von Wartezeiten und eines Ausgangssignals kann ggf. sogar die Ansteuerung der Kamera integriert werden, so dass nach Ablauf eines Fotoshootings nur noch die Bilder von der Kamera auf einen PC übertragen werden können. Noch komfortabler geht es nur noch durch den Einsatz eines USB-Controllers und einer auf die Anwendung abgestimmten PC-Software…

Falls eine Referenzfahrt oder ein Freigabesignal erforderlich ist, kann dies problemlos über die digitalen Eingänge gelöst werden, während die digitalen Ausgänge z.B. Fehlerzustände, Bereitsignale u.ä. signalisieren können. Zusätzlich steht ein analoger Ausgang zur Verfügung, mit dem z.B. die aktuelle Geschwindigkeit des Motors ausgegeben werden kann. Für alle Eingangswerte und die internen Variablen stehen mathematische Funktionen zur Verfügung, so dass auch komplette Regler realisiert werden können.

Abseits von reinen Schrittmotor-Endstufen mit Takt-/Richtungssignalen erschließen Schrittmotor-Steuerungen mit Zusatzfunktionen ein breites Anwendungsfeld. Ich hoffe, ich konnte Sie mit den vorgestellten Beispielen inspirieren und würde mich über Ergänzungen aus Ihrer beruflichen Praxis freuen.