Posts Tagged ‘analog’

Drehzahlsteuerung von Kleinantrieben

Sonntag, Dezember 4th, 2016

Wird in einer Anwendung ein Antrieb mit niedriger, (nahezu) konstanter Drehzahl benötigt, fällt die Wahl schnell auf einen Gleichstrommotor mit Getriebe. Der Motor kann über einen Relaiskontakt einfach ein- und ausgeschaltet werden und benötigt zum Betrieb keine weiteren Komponenten wie z.B. Sensoren oder Motorregler.

Bei genauerer Betrachtung ist ein Getriebemotor aber nicht immer die optimale Wahl:

Die Lebensdauer des Getriebes ist begrenzt, was besonders bei Anwendungen mit Dauerbetrieb zu Ausfällen führen kann. Dazu kommen das Geräuschverhalten des Getriebes und mögliche EMV-Probleme durch das Bürstenfeuer des Gleichstrommotors. Spätestens wenn dann noch die Forderung nach einer konstanten Drehzahl unabhängigen von der Last dazu kommt, ist der vermeintliche Kostenvorteil schnell dahin. Dann muss ein Encoder oder ein anderer Sensor zur Drehzahlerfassung und ein 2- oder 4-Quadrantensteller zur Regelung der Motordrehzahl eingesetzt werden.

Gerade bei Anwendungen mit vergleichsweise niedrigen Drehzahlen, wie z.B. dem Antrieb kleiner Förderbänder, Drehteller oder anderer Hilfsachsen, bieten sich Schrittmotoren als Direktantriebe ohne Getriebe an. Dank ihrer hohen Polpaarzahl liefern sie ein deutlich höheres Drehmoment als DC- oder BLDC-Motoren gleicher Baugröße ohne Getriebe. Über das von der Schrittmotorsteuerung vorgegebene Feld lässt sich die Drehzahl präzise steuern, die Versorgungsspannung kann außerdem weitestgehend unabhängig von den elektrischen Daten des Motors gewählt werden. Und dank hochauflösender Mikroschritt-Ansteuerung ist auch das Geräuschverhalten in den letzten Jahren deutlich besser geworden. Abgesehen von den Kugellagern im Motor sind Schrittmotoren zudem verschleißfrei.

Was verhindert also den Ersatz von Getriebemotoren durch Schrittmotoren?

Zum einen benötigen viele Standard-Steuerungen als Eingangssignal ein Taktsignal, weil Schrittmotoren meistens als Positionierantriebe verwendet werden. Bei der hierfür verbreiteten Takt-/Richtungsschnittstelle entspricht jeder Taktimpulse einem Schritt des Motors, über die Taktfrequenz wird also letztlich die Drehzahl des Schrittmotors vorgegeben. Die Erzeugung eines solchen schnellen Taktsignals (abhängig von der Mikroschritt-Einstellung einige hundert Hertz bis einige 10 kHz) ist aber mit normalen SPS-Ausgängen nur sehr eingeschränkt möglich; schnelle Taktausgänge sind vergleichsweise teuer und für den Programmierer z.T. nicht einfach in der Handhabung. Außerdem führen Ungleichmäßigkeiten im Taktsignal (z.B. Jitter) zu hörbaren Störungen im Motorlauf, die im Extremfall bis hin zum Ausrasten des Motors führen können. Zum anderen benötigen die meisten am Markt erhältlichen Steuerungen Signalpegel von lediglich 5V, während in der SPS-Welt fast durchgehend mit 24V I/O Signalen gearbeitet wird. Externe Vorwiderstände sind aber im Schaltschrankbau nicht gerne gesehen…

Eine Lösung bieten Schrittmotorsteuerungen mit integrierter Takterzeugung und 24V-toleranten I/Os:

Die Tiny-Step.plus für kleine Schrittmotoren (Nema17 bis max. Nema23 je nach Nennstrom) enthält einen Taktgenerator, der wahlweise über ein internes Trimmpoti oder einen Analogeingang gesteuert werden kann. Digitale Eingänge für Start/Stopp, Drehrichtung und Enable ermöglichen so eine einfache Steuerung über Standard-I/Os durch eine SPS oder völlig autark z.B. für Drehteller zur Warenpräsentation oder in Kunstobjekten.

Tiny-Step.plus mit Drehzahl-Steuerung
Schrittmotorsteuerung Tiny-Step.plus mit integrierter Drehzahlsteuerung.

Die Geräte der DS10-Serie von LAM enthalten einen digitalen Taktgeber, der bei der Parametrierung der Geräte auf einen festen Wert eingestellt wird. Über einen konfigurierbaren digitalen Eingang kann der Motor dann gestartet und wieder gestoppt werden, ergänzend sind eine Umschaltung der Drehrichtung sowie ein Enable-Signal zum Ein- und Ausschalten der Endstufe vorgesehen. Durch die fest eingestellte Drehzahl wird der Motor hierbei allerdings abrupt auf Drehzahl gebracht, diese Ansteuerung eignet sich also nur für niedrige Drehzahlen. Für mehr Dynamik benötigt ein Schrittmotor eigentlich eine Beschleunigungsrampe. Eine Zwischenstufe ermöglicht der Taktgenerator der DS10-Serie, der eine Umschaltung zwischen zwei verschiedenen festen Drehzahlen erlaubt. So kann der Motor mit niedriger Drehzahl anlaufen, und dann über einen weiteren Eingang an der Steuerung auf eine höhere Geschwindigkeit umgeschaltet werden.

Für Anwendungen, die noch mehr Flexibilität benötigen (z.B. Anlauframpen) oder ganz ohne weitere Steuerung betrieben werden sollen, empfehlen sich die frei programmierbaren Schrittmotorsteuerungen aus der DS30-Serie. Hiermit lassen sich z.B. voll automatische Fototische (Scantable) realisieren, incl. Ansteuerung des Kameraauslösers. Dazu später mehr in einem weiteren Blogbeitrag.

Im Zusammenspiel mit modernen Steuerungen bieten sich Schrittmotoren als Alternative zu Getriebemotoren für Anwendungen mit niedrigen Drehzahlen an. Der Einsatz ist fast genau so einfach wie der eines Gleichstrommotors. Und berücksichtigt man die Gesamtkosten (Getriebe, ggf. Encoder plus Verdrahtung, Instandhaltung), kann eine solche Lösung dabei sogar günstiger sein. Es lohnt sich also, über diese Alternative nachzudenken…

Anwendungsmöglichkeiten für Schrittmotoren in der Produktions- und Automatisierungstechnik

Freitag, August 19th, 2011

Durch Auswahl der für die Anwendung optimalen Schrittmotor-Steuerung lassen sich Schrittmotore deutlich schneller und einfacher in die verschiedensten Anwendungen integrieren. Der folgende Beitrag gibt einen Überblick über die Möglichkeiten und nennt einige Anwendungsbeispiele von der animierten Produktfotografie bis hin zu Drosselklappensteuerungen oder Wickeleinrichtungen.

Schrittmotoren als Ersatz für langsam laufenden Gleichstrom-Getriebemotoren

In vielen Anwendungen werden Antriebe benötigt, die lediglich eine konstante und oft niedrige Drehzahl bereitstellen müssen. Beispiele sind Antriebe für Zuführeinheiten, Band- oder Kettenantriebe für den Produkttransport, Stationen zum Einschleusen von Bauteilen in Montageprozesse usw. Aufgrund der niedrigen Drehzahlen werden hierfür oft Getriebemotoren eingesetzt, vielfach noch mit bürstenbehafteten Gleichstrommotoren. Aufgrund ihrer hohen Polpaarzahl und des vergleichsweise hohen Drehmomentes bieten sich Schrittmotoren als alternative Antriebsform an. Die Vorteile liegen auf der Hand: Besseres Störverhalten (EMC) durch Entfall des Bürstenfeuers und vor allem deutlich niedrigere Ausfallraten, da die verschleißanfälligen Komponenten Getriebe und Bürsten entfallen. Durch den Wegfall des Getriebes ist die Lösung mit Schrittmotor zudem oft auch preiswerter. Dank moderner Ansteuerverfahren mit Mikroschritt stehen Schrittmotoren anderen Antrieben in Hinblick auf das Geräuschverhalten in nichts nach.

Für den einfachen Einsatz in der Anwendung muss allerdings ein Taktsignal für die Schrittmotorsteuerung bereits gestellt werden. Auf Basis des Timer-ICs NE555 kann mit wenigen Bauteilen eine Schaltung aufgebaut werden, die ein über Spindeltrimmer einstellbares Taktsignal erzeugt. Das Bild zeigt den Schaltplan mit dem NE555 in der Grundschaltung als so genannter Multivibrator. Über den Spindeltrimmer kann die Frequenz innerhalb von mindestens einer Dekade verstellt werden. Durch Variation des Kondensators (z.B. Weglassen von C2) kann der Frequenzbereich zusätzlich variiert werden. Eine entsprechende Leerplatine ist über mechapro.de erhältlich. Die gleiche Grundschaltung wurde in der Schrittmotor-Endstufe Tinystep II verwendet (nur in den Ausführungen „plus“ und „Tragschienen-Gehäuse“. Andere Motortreiber enthalten einen Mikrocontroller, der die Ansteuerung der Endstufe übernimmt. Ist ein Controller vorhanden, bietet es sich natürlich an, diesen auch für die Takterzeugung zu verwenden. Die Treiber der DS10-Reihe von LAM bieten so die Möglichkeit, über I/O zwei parametrierbare Frequenzen auszuwählen.

Beschaltung des NE555 als Multivibrator zur Takterzeugung

Bei größeren bewegten Massen oder Bewegungen mit höheren Drehzahlen benötigen Schrittmotoren eine Anlauframpe. Neben umfangreich programmierbaren Treibern (wie z.B. der DS30-Serie von LAM) gibt es Lösungen mit analoger Sollwertvorgabe für die Drehzahl. So kann eine übergeordnete Steuerung direkten Einfluss auf die Drehzahl des Schrittmotors nehmen, ohne Frequenzen bis in den zweistelligen kHz-Bereich erzeugen zu müssen. Die bietet einen Eingang für +/-10V, mit dem die Drehzahl bis 5U/s eingestellt werden kann. Neben den zuvor genannten Anwendungen können Schrittmotoren so auch für Registerregelungen, Wickelvorrichtungen usw. eingesetzt werden.

Vielfältige Möglichkeiten mit frei programmierbaren Schrittmotorsteuerungen

Frei programmierbare Treiber wie die DS30-Serie von LAM ermöglichen den Einsatz von Schrittmotoren für vielfältige Anwendungen, ohne das eine permanente PC-Verbindung oder eine komplexe SPS erforderlich wären. Digitale und analoge Ein- und Ausgänge synchronisieren das interne Programm mit dem Verhalten der Anlage. Um z.B. eine Drosselklappenverstellung abhängig von einem analogen Sollwert zu realisieren, wird in der Steuerung der Wert des analogen Eingangs mit der Sollposition des Antriebs verknüpft. Beim Einsatz in Wickelvorrichtungen kann der Analogwert hingegen zur Anpassung der Geschwindigkeit des Wicklers eingesetzt werden. Zur Steuerung von Drehtellern für die Produktfotografie können z.B. feste Wegstrecken eingestellt werden, die dann entweder über einen Eingang oder voll automatisch ausgelöst werden können. Durch den Einsatz von Wartezeiten und eines Ausgangssignals kann ggf. sogar die Ansteuerung der Kamera integriert werden, so dass nach Ablauf eines Fotoshootings nur noch die Bilder von der Kamera auf einen PC übertragen werden können. Noch komfortabler geht es nur noch durch den Einsatz eines USB-Controllers und einer auf die Anwendung abgestimmten PC-Software…

Falls eine Referenzfahrt oder ein Freigabesignal erforderlich ist, kann dies problemlos über die digitalen Eingänge gelöst werden, während die digitalen Ausgänge z.B. Fehlerzustände, Bereitsignale u.ä. signalisieren können. Zusätzlich steht ein analoger Ausgang zur Verfügung, mit dem z.B. die aktuelle Geschwindigkeit des Motors ausgegeben werden kann. Für alle Eingangswerte und die internen Variablen stehen mathematische Funktionen zur Verfügung, so dass auch komplette Regler realisiert werden können.

Abseits von reinen Schrittmotor-Endstufen mit Takt-/Richtungssignalen erschließen Schrittmotor-Steuerungen mit Zusatzfunktionen ein breites Anwendungsfeld. Ich hoffe, ich konnte Sie mit den vorgestellten Beispielen inspirieren und würde mich über Ergänzungen aus Ihrer beruflichen Praxis freuen.