Posts Tagged ‘Drehzahl’

Drehzahlsteuerung von Kleinantrieben

Sonntag, Dezember 4th, 2016

Wird in einer Anwendung ein Antrieb mit niedriger, (nahezu) konstanter Drehzahl benötigt, fällt die Wahl schnell auf einen Gleichstrommotor mit Getriebe. Der Motor kann über einen Relaiskontakt einfach ein- und ausgeschaltet werden und benötigt zum Betrieb keine weiteren Komponenten wie z.B. Sensoren oder Motorregler.

Bei genauerer Betrachtung ist ein Getriebemotor aber nicht immer die optimale Wahl:

Die Lebensdauer des Getriebes ist begrenzt, was besonders bei Anwendungen mit Dauerbetrieb zu Ausfällen führen kann. Dazu kommen das Geräuschverhalten des Getriebes und mögliche EMV-Probleme durch das Bürstenfeuer des Gleichstrommotors. Spätestens wenn dann noch die Forderung nach einer konstanten Drehzahl unabhängigen von der Last dazu kommt, ist der vermeintliche Kostenvorteil schnell dahin. Dann muss ein Encoder oder ein anderer Sensor zur Drehzahlerfassung und ein 2- oder 4-Quadrantensteller zur Regelung der Motordrehzahl eingesetzt werden.

Gerade bei Anwendungen mit vergleichsweise niedrigen Drehzahlen, wie z.B. dem Antrieb kleiner Förderbänder, Drehteller oder anderer Hilfsachsen, bieten sich Schrittmotoren als Direktantriebe ohne Getriebe an. Dank ihrer hohen Polpaarzahl liefern sie ein deutlich höheres Drehmoment als DC- oder BLDC-Motoren gleicher Baugröße ohne Getriebe. Über das von der Schrittmotorsteuerung vorgegebene Feld lässt sich die Drehzahl präzise steuern, die Versorgungsspannung kann außerdem weitestgehend unabhängig von den elektrischen Daten des Motors gewählt werden. Und dank hochauflösender Mikroschritt-Ansteuerung ist auch das Geräuschverhalten in den letzten Jahren deutlich besser geworden. Abgesehen von den Kugellagern im Motor sind Schrittmotoren zudem verschleißfrei.

Was verhindert also den Ersatz von Getriebemotoren durch Schrittmotoren?

Zum einen benötigen viele Standard-Steuerungen als Eingangssignal ein Taktsignal, weil Schrittmotoren meistens als Positionierantriebe verwendet werden. Bei der hierfür verbreiteten Takt-/Richtungsschnittstelle entspricht jeder Taktimpulse einem Schritt des Motors, über die Taktfrequenz wird also letztlich die Drehzahl des Schrittmotors vorgegeben. Die Erzeugung eines solchen schnellen Taktsignals (abhängig von der Mikroschritt-Einstellung einige hundert Hertz bis einige 10 kHz) ist aber mit normalen SPS-Ausgängen nur sehr eingeschränkt möglich; schnelle Taktausgänge sind vergleichsweise teuer und für den Programmierer z.T. nicht einfach in der Handhabung. Außerdem führen Ungleichmäßigkeiten im Taktsignal (z.B. Jitter) zu hörbaren Störungen im Motorlauf, die im Extremfall bis hin zum Ausrasten des Motors führen können. Zum anderen benötigen die meisten am Markt erhältlichen Steuerungen Signalpegel von lediglich 5V, während in der SPS-Welt fast durchgehend mit 24V I/O Signalen gearbeitet wird. Externe Vorwiderstände sind aber im Schaltschrankbau nicht gerne gesehen…

Eine Lösung bieten Schrittmotorsteuerungen mit integrierter Takterzeugung und 24V-toleranten I/Os:

Die Tiny-Step.plus für kleine Schrittmotoren (Nema17 bis max. Nema23 je nach Nennstrom) enthält einen Taktgenerator, der wahlweise über ein internes Trimmpoti oder einen Analogeingang gesteuert werden kann. Digitale Eingänge für Start/Stopp, Drehrichtung und Enable ermöglichen so eine einfache Steuerung über Standard-I/Os durch eine SPS oder völlig autark z.B. für Drehteller zur Warenpräsentation oder in Kunstobjekten.

Tiny-Step.plus mit Drehzahl-Steuerung
Schrittmotorsteuerung Tiny-Step.plus mit integrierter Drehzahlsteuerung.

Die Geräte der DS10-Serie von LAM enthalten einen digitalen Taktgeber, der bei der Parametrierung der Geräte auf einen festen Wert eingestellt wird. Über einen konfigurierbaren digitalen Eingang kann der Motor dann gestartet und wieder gestoppt werden, ergänzend sind eine Umschaltung der Drehrichtung sowie ein Enable-Signal zum Ein- und Ausschalten der Endstufe vorgesehen. Durch die fest eingestellte Drehzahl wird der Motor hierbei allerdings abrupt auf Drehzahl gebracht, diese Ansteuerung eignet sich also nur für niedrige Drehzahlen. Für mehr Dynamik benötigt ein Schrittmotor eigentlich eine Beschleunigungsrampe. Eine Zwischenstufe ermöglicht der Taktgenerator der DS10-Serie, der eine Umschaltung zwischen zwei verschiedenen festen Drehzahlen erlaubt. So kann der Motor mit niedriger Drehzahl anlaufen, und dann über einen weiteren Eingang an der Steuerung auf eine höhere Geschwindigkeit umgeschaltet werden.

Für Anwendungen, die noch mehr Flexibilität benötigen (z.B. Anlauframpen) oder ganz ohne weitere Steuerung betrieben werden sollen, empfehlen sich die frei programmierbaren Schrittmotorsteuerungen aus der DS30-Serie. Hiermit lassen sich z.B. voll automatische Fototische (Scantable) realisieren, incl. Ansteuerung des Kameraauslösers. Dazu später mehr in einem weiteren Blogbeitrag.

Im Zusammenspiel mit modernen Steuerungen bieten sich Schrittmotoren als Alternative zu Getriebemotoren für Anwendungen mit niedrigen Drehzahlen an. Der Einsatz ist fast genau so einfach wie der eines Gleichstrommotors. Und berücksichtigt man die Gesamtkosten (Getriebe, ggf. Encoder plus Verdrahtung, Instandhaltung), kann eine solche Lösung dabei sogar günstiger sein. Es lohnt sich also, über diese Alternative nachzudenken…

Innere Werte – Qualität von Schrittmotoren

Donnerstag, Februar 4th, 2016

In den letzten 10 Jahren sind die Preise bei Schrittmotoren deutlich unter Druck geraten, vor allem wegen der billigen Produkte aus China. Für den Anwender stellt sich die Frage, wie die Qualität der Motoren zu bewerten ist, da der Preis wie so oft nur bedingt einen Rückschluss auf die Qualität des Produkts zulässt. Im folgenden Beitrag möchte ich daher auf einige Eigenschaften von Schrittmotoren eingehen und aufzeigen, welche Unterschiede es im Detail gibt.

Blechpaket / Stator

Zur Vermeidung von Wirbelstromverlusten wird der Stator des Schrittmotors geblecht ausgeführt. Die Statorbleche sind mit einem Backlack beschichtet, der nach Aufbau des Blechpakets im Ofen verbacken wird, um mechanische Stabilität zu erreichen. Zusätzliche Stabilität erhält der Motor durch die Verschraubung, welche vom vorderen bis zum hinteren Lagerschild reicht. Die Lagerschilde werden aus Gußrohlingen hergestellt, bei denen lediglich die Funktionsflächen (Lagersitze, Montageflansch mit Zentrierbund) spanabhebend nachbearbeitet werden.

Berger Lahr VRDM566

Wo rohe Kräfte sinnlos walten… Bei diesem 5-phasen Schrittmotor von Berger Lahr wurde das Statorgehäuse durch eine übermäßige Drehmoment-Belastung tordiert.

Insbesondere bei preiswerten Motoren werden die Bleche zusätzlich mit mehreren Nähten verschweißt, was an den Schweißnähten naheliegender weise für erhöhte Verluste sorgt. Bei inzwischen erhältlichen Motorlängen bis zu 112mm (bei Motoren mit 56mm Flanschmaß) ist diese Maßnahme kaum zu vermeiden. Bei Motoren mit lediglich 56mm Länge sollte sich die Stabilität des Motors allerdings auch auf anderem Wege erreichen lassen.

Blechpaket Statorgehäuse

Von links nach rechts: Markenloser Chinamotor mit geschweißtem Blechpaket, Nidec Servo KH56QM2 mit gleichmäßiger, ungeschweißter Blechung und Sanyo Denki 103H7823 mit sichtbarem Lagenaufbau.

Wie groß der Einfluss der Statorverluste im Dauerbetrieb sein kann, zeigt die Firma Oriental Motor in einer Wärmebildaufnahme. Vergleichen wurde ein Standardmotor mit der relativ neuen Motorserie PKE, welche mit dünneren Statorblechen aufgebaut wird, um die Verluste weiter zu reduzieren.

Wärmebild Oriental Motor PKE-Serie

Wärmebildaufnahme zum Einfluss der Stator-Blechstärke auf die Erwärmung und damit die Verluste im Motor. Nach 80 Minuten ergibt sich eine Differenz von 40°C am Motorgehäuse [Quelle: Oriental Motor].

Das es auch unter den Motoren „Made in China“ deutliche Qualitätsunterschiede gibt, ist noch auf andere Ursachen zurückzuführen. Einige Importeure betreiben vor Ort eigene Qualitätssicherung und erreichen so geringere Fertigungs- und Montagetoleranzen. Andere Hersteller beziehen nur die Einzelteile aus China, führen die Endmontage aber in Europa durch. Dies gilt z.B. für die Schrittmotoren der italienischen Firma LAM. Abhängig von der Fertigungstiefe müssen diese Motoren aber trotzdem als „Made in China“ gekennzeichnet werden. Die großen japanischen Hersteller sind z.T. noch einen Schritt weiter, und fertigen große Serien schon nicht mehr in China, sondern in anderen asiatischen Ländern, in denen die Lohnkosten deutlich niedriger sind als in China. Durch die hohen Fertigungsstandards und die ISO-zertifizierte Qualitätssicherung ist hat das in der Regel jedoch keinen Einfluss auf die Qualität der Schrittmotoren.

Lager

Die für die Lagerung der Motorwelle verwendeten Kugellager sind die einzigen Verschleißteile bei Schrittmotoren. Insbesondere bei hohen radialen und axialen Kräften auf die Welle (z.B. bei Zahnriemen-Antrieben) haben sie wesentlichen Einfluss auf die Lebensdauer des Motors. Die Lagergröße ist bei Motoren mit Normflansch („Nema“-Baugrößen) durch die Geometrie des Motorflansches vorgegeben. Unterschiede finden sich dagegen bei den verwendeten Lagern selbst (hochwertige Markenprodukte oder preiswerte China-Ware) und bei den Fertigungstoleranzen im Lagerschild und an der Motorwelle. Diese Faktoren können nur durch Öffnen des Motors bzw. mehrerer Motoren geprüft werden, womit der Motor in der Regel unbrauchbar wird. Fertigungs- und Wicklungstoleranzen beeinflussen außerdem die mögliche Streuung in der Serienfertigung sowie Rastmoment und Positionsgenauigkeit im Mikroschritt, und damit das Geräusch und Resonanzverhalten der Schrittmotoren.

PK268 geöffnet

Zerlegter PK268 von Oriental Motor, der nach einem Defekt zur Befundung geöffnet wurde.

Motorwelle

Neben den Fertigungstoleranzen ist für den Anwender vor allem die äußere Ausführung des bzw. der Wellenenden von Interesse. Hierzu zählen Durchmesser, Länge und Querschnitt. War bei 56mm Flanschmaß („Nema23“) lange ein Wellendurchmesser von 6,35mm (1/4“) der Standard, werden viele Motoren mit höherem Drehmoment inzwischen mit 8,0mm Welle geliefert. Noch größer ist die Vielfalt bei Motoren mit 86mm Flansch („Nema34“), hier sind Wellendurchmesser 9,525mm, 12,0mm und 14,0mm gängig. Neben glatter Welle sind ein- oder zweiseitige Wellenabflachung (D-cut) und Wellen mit Passfedernut, sowie Motoren mit ein und zwei Wellenenden erhältlich. Je nach Hersteller gibt es unterschiedliche Standardausführungen, die bei Abnahme größerer Serien auch kundenspezifisch angepasst werden können. Das 2. Wellenende kann z.B. zur Montage von Handrädern, Dämpfern, Encodern oder Motorbremsen verwendet werden. Neben einer entsprechenden Wellenbearbeitung sind für die Montage z.T. auch passende Bohrungen oder Gewinde im hinteren Lagerschild erforderlich.

Unterschiedliche Motorwellen

Von links nach rechts: China-Motor mit runder 6,35mm Welle, PKP268 mit 8,0mm Welle und einseitiger Abflachung, Sanyo Denki 103H7823 mit 8,0mm Welle und 2-facher Abflachung.

Litzen

Bei Motoren mit herausgeführten Leitungen gibt es deutliche Unterschiede bei den verwendeten Litzen. Gute Motoren sind mit sehr flexiblen Litzen ausgestattet, die sich durch einen feindrähtigen Aufbau und dünne, flexible Isoliermaterialien auszeichnen. Bei preiswerten Schrittmotoren sind die Litzen dagegen meist deutlich starrer, der innere Aufbau besteht aus weniger und dafür dickeren Drähten und die Isoliermaterialien sind steifer. Der Litzenaufdruck gibt Aufschluss über Querschnitt, Temperatur- und Spannungsfestigkeit sowie ggf. vorhandene Prüfsiegel (UL, CSA, VDE). Bei Ausführungen in IP54 wird ein mehradriges Kabel statt Einzeladern verwendet, und der Kabelausgang ist zusätzlich abgedichtet.

Anschlusslitzen von Schrittmotoren

Links: China-Motor mit relativ starren Litzen, Kabeldurchführung durch Gumminippel. Rechts: PK266-E2.0B mit feindrähtigen Litzen, Kabeldurchführung mit Kantenschutz aus Kunststoff.

Kabelausgang / Stecker

Alternativ zum Herausführen von Anschlusslitzen gibt es verschiedene Varianten mit steckbaren Anschlüssen. Gängig sind Direkt-Steckverbindungen mit Steckern von JST, Molex oder Amphenol im Kunststoffgehäuse, mit oder ohne zusätzliche Abdeckung am Motorgehäuse. Vereinzelt sind auch Schrittmotoren mit integrierten Industriesteckern (M12) im Angebot, z.B. von Festo. Eine Zwischenlösung sind Motoren mit Klemmkasten am hinteren Lagerschild. Meist wird diese Variante gewählt, wenn die Schutzart IP65 erreicht werden muss. Der Anwender führt das Kabel über eine Kabelverschraubung („PG-Verschraubung“, heute meist mit metrischem Gewinde) in den Klemmkasten ein, wo die einzelnen Adern auf Schraubklemmen aufgelegt werden. Durch den Klemmkasten baut der Motor deutlich länger, die Abdichtung treibt außerdem die Kosten in die Höhe.

Stecker-Varianten bei Nema23 Motoren

Verschiedene Ausführungen von Steckern bei Schrittmotoren. Von links nach rechts: Nidec Servo KH56QM2, Oriental Motor PKP268, Sanyo Denki 103H7823.

Kennlinie

Für die Auslegung des Antriebs spielen Drehzahl-Drehmoment Kennlinien eine wichtige Rolle. Sie geben Aufschluss darüber, welches Drehmoment der Motor bei verschiedenen Drehzahlen erreicht. Da die Kennlinien je nach Versorgungsspannung unterschiedlich ausfallen, ist es hilfreich, wenn Kennlinien für mehrere Spannungen zur Verfügung stehen. Zu sehr preiswerten Motoren aus unbekannter Fertigung bekommt man oft gar keine Kennlinien. Dann bleibt nur die Erprobung in der Applikation, wobei es sinnvoll ist, mit erhöhten Lasten zu arbeiten, um ausreichend Reserven zu berücksichtigen. Alle großen Hersteller stellen dagegen Kennlinien zu ihren Motoren zur Verfügung. Unter Umständen ist es sogar möglich, für spezielle Anwendungen (ungewöhnliche Versorgungsspannung, Betrieb mit geringerem Strom usw.), eine Kennlinie speziell nach Anforderungen des Anwenders aufzunehmen.

Verfügbarkeit

Die langfristige Verfügbarkeit von Ersatzteilen ist in kommerziellen Anwendungen ein gewichtiges Argument. Hier gibt es selbst bei den großen Herstellern unterschiedliche Philosophien und Produktlaufzeiten. Für einige Hersteller ist der europäische Markt relativ unbedeutend, entsprechend stiefmütterlich werden die Kunden behandelt, wenn es um Ersatzteile geht. In anderen Fällen bekommt man auch über 10 Jahre nach Auslaufen einer Serie problemlos einzelne Motoren als Ersatzteil. So lieferte z.B. Oriental Motor bis Frühjahr 2015 noch Motoren aus der 2-Phasen PH-Serie, welche Bereits in den 1990’er Jahren durch die bis heute verfügbare PK-Serie abgelöst wurde.

Fazit – Erforderliche Qualität hängt von der Anwendung ab

Wie man sieht, steckt der Teufel im Detail. Ob die vorgestellten Unterschiede relevant sind, hängt stark von der Applikation und den Ansprüchen an den Antrieb ab. Für private Anwendungen sind die meisten genannten Kriterien von untergeordneter Bedeutung, hier zählt für viele Anwender vor allem der Preis. In kommerziellen Applikationen sieht das ganz anders aus: Ist der Hersteller bzw. Lieferant flexibel genug, Wellenbearbeitung oder Anschlussleitung an die Kundenwünsche anzupassen, kann das in der Montage eine Menge Aufwand und damit Geld sparen. Falls dagegen der verwendete Schrittmotor nach 3 Jahren nicht mehr lieferbar ist, muss ein Ersatztyp qualifiziert werden. Soll z.B. das Endprodukt auf einmal in die USA exportiert werden, kommen Themen wie Prüfsiegel (UL) und Entflammbarkeitsklasse von Litzen und Steckern auf die Tagesordnung. Vor einer Entscheidung für einen Motor lohnt es sich also, verschiedene Typen zu vergleichen und dabei die genannten Kriterien im Blick zu behalten.

Anwendungsmöglichkeiten für Schrittmotoren in der Produktions- und Automatisierungstechnik

Freitag, August 19th, 2011

Durch Auswahl der für die Anwendung optimalen Schrittmotor-Steuerung lassen sich Schrittmotore deutlich schneller und einfacher in die verschiedensten Anwendungen integrieren. Der folgende Beitrag gibt einen Überblick über die Möglichkeiten und nennt einige Anwendungsbeispiele von der animierten Produktfotografie bis hin zu Drosselklappensteuerungen oder Wickeleinrichtungen.

Schrittmotoren als Ersatz für langsam laufenden Gleichstrom-Getriebemotoren

In vielen Anwendungen werden Antriebe benötigt, die lediglich eine konstante und oft niedrige Drehzahl bereitstellen müssen. Beispiele sind Antriebe für Zuführeinheiten, Band- oder Kettenantriebe für den Produkttransport, Stationen zum Einschleusen von Bauteilen in Montageprozesse usw. Aufgrund der niedrigen Drehzahlen werden hierfür oft Getriebemotoren eingesetzt, vielfach noch mit bürstenbehafteten Gleichstrommotoren. Aufgrund ihrer hohen Polpaarzahl und des vergleichsweise hohen Drehmomentes bieten sich Schrittmotoren als alternative Antriebsform an. Die Vorteile liegen auf der Hand: Besseres Störverhalten (EMC) durch Entfall des Bürstenfeuers und vor allem deutlich niedrigere Ausfallraten, da die verschleißanfälligen Komponenten Getriebe und Bürsten entfallen. Durch den Wegfall des Getriebes ist die Lösung mit Schrittmotor zudem oft auch preiswerter. Dank moderner Ansteuerverfahren mit Mikroschritt stehen Schrittmotoren anderen Antrieben in Hinblick auf das Geräuschverhalten in nichts nach.

Für den einfachen Einsatz in der Anwendung muss allerdings ein Taktsignal für die Schrittmotorsteuerung bereits gestellt werden. Auf Basis des Timer-ICs NE555 kann mit wenigen Bauteilen eine Schaltung aufgebaut werden, die ein über Spindeltrimmer einstellbares Taktsignal erzeugt. Das Bild zeigt den Schaltplan mit dem NE555 in der Grundschaltung als so genannter Multivibrator. Über den Spindeltrimmer kann die Frequenz innerhalb von mindestens einer Dekade verstellt werden. Durch Variation des Kondensators (z.B. Weglassen von C2) kann der Frequenzbereich zusätzlich variiert werden. Eine entsprechende Leerplatine ist über mechapro.de erhältlich. Die gleiche Grundschaltung wurde in der Schrittmotor-Endstufe Tinystep II verwendet (nur in den Ausführungen „plus“ und „Tragschienen-Gehäuse“. Andere Motortreiber enthalten einen Mikrocontroller, der die Ansteuerung der Endstufe übernimmt. Ist ein Controller vorhanden, bietet es sich natürlich an, diesen auch für die Takterzeugung zu verwenden. Die Treiber der DS10-Reihe von LAM bieten so die Möglichkeit, über I/O zwei parametrierbare Frequenzen auszuwählen.

Beschaltung des NE555 als Multivibrator zur Takterzeugung

Bei größeren bewegten Massen oder Bewegungen mit höheren Drehzahlen benötigen Schrittmotoren eine Anlauframpe. Neben umfangreich programmierbaren Treibern (wie z.B. der DS30-Serie von LAM) gibt es Lösungen mit analoger Sollwertvorgabe für die Drehzahl. So kann eine übergeordnete Steuerung direkten Einfluss auf die Drehzahl des Schrittmotors nehmen, ohne Frequenzen bis in den zweistelligen kHz-Bereich erzeugen zu müssen. Die bietet einen Eingang für +/-10V, mit dem die Drehzahl bis 5U/s eingestellt werden kann. Neben den zuvor genannten Anwendungen können Schrittmotoren so auch für Registerregelungen, Wickelvorrichtungen usw. eingesetzt werden.

Vielfältige Möglichkeiten mit frei programmierbaren Schrittmotorsteuerungen

Frei programmierbare Treiber wie die DS30-Serie von LAM ermöglichen den Einsatz von Schrittmotoren für vielfältige Anwendungen, ohne das eine permanente PC-Verbindung oder eine komplexe SPS erforderlich wären. Digitale und analoge Ein- und Ausgänge synchronisieren das interne Programm mit dem Verhalten der Anlage. Um z.B. eine Drosselklappenverstellung abhängig von einem analogen Sollwert zu realisieren, wird in der Steuerung der Wert des analogen Eingangs mit der Sollposition des Antriebs verknüpft. Beim Einsatz in Wickelvorrichtungen kann der Analogwert hingegen zur Anpassung der Geschwindigkeit des Wicklers eingesetzt werden. Zur Steuerung von Drehtellern für die Produktfotografie können z.B. feste Wegstrecken eingestellt werden, die dann entweder über einen Eingang oder voll automatisch ausgelöst werden können. Durch den Einsatz von Wartezeiten und eines Ausgangssignals kann ggf. sogar die Ansteuerung der Kamera integriert werden, so dass nach Ablauf eines Fotoshootings nur noch die Bilder von der Kamera auf einen PC übertragen werden können. Noch komfortabler geht es nur noch durch den Einsatz eines USB-Controllers und einer auf die Anwendung abgestimmten PC-Software…

Falls eine Referenzfahrt oder ein Freigabesignal erforderlich ist, kann dies problemlos über die digitalen Eingänge gelöst werden, während die digitalen Ausgänge z.B. Fehlerzustände, Bereitsignale u.ä. signalisieren können. Zusätzlich steht ein analoger Ausgang zur Verfügung, mit dem z.B. die aktuelle Geschwindigkeit des Motors ausgegeben werden kann. Für alle Eingangswerte und die internen Variablen stehen mathematische Funktionen zur Verfügung, so dass auch komplette Regler realisiert werden können.

Abseits von reinen Schrittmotor-Endstufen mit Takt-/Richtungssignalen erschließen Schrittmotor-Steuerungen mit Zusatzfunktionen ein breites Anwendungsfeld. Ich hoffe, ich konnte Sie mit den vorgestellten Beispielen inspirieren und würde mich über Ergänzungen aus Ihrer beruflichen Praxis freuen.