Posts Tagged ‘Simulation’

Literatur zu Schrittmotoren

Freitag, Juni 8th, 2012

Wer anfängt, sich mit Schrittmotoren zu beschäftigen, findet im Web eine Menge an Quellen, anhand derer man sich einen ersten Überblick verschaffen kann. Zu empfehlen ist zunächst der Wikipedia-Artikel zum Schrittmotor. All denen, die halbwegs englisch sprechen bzw. lesen können, sei die Webseite von Professor Jones ans Herz gelegt. Auch meine Homepage zum Schrittmotor möchte ich nicht unerwähnt lassen…

Was aber, wenn man tiefer in das Thema Schrittmotor einsteigen will? Ältere Semester werden sich erinnern: Richtig, dann könnte man ein Buch zur Hand nehmen. Aber welches? Ich habe im Folgenden eine Übersicht über bekannte und weniger bekannte Bücher rund um den Schrittmotor zusammen gestellt. Allen gemein ist, dass sie schon einige Jahre auf dem Buckel haben. Viele Titel sind außerdem nicht mehr neu erhältlich, sondern nur noch gebraucht über eBay, Amazon und Co.

Neuere Entwicklungen wie Mikroschritt, Stall-detection (Überlasterkennung) oder sensorlose Regelung bleiben bei den Büchern also außen vor. Doch bevor man sich intensiv mit diesen Themen beschäftigt, lohnt es sich, ein gutes Grundverständnis vom Schrittmotor und dem zugrunde liegenden Wirkprinzip aufzubauen. Dann lesen sich die Datenblätter und Applikation Notes der IC-Hersteller deutlich leichter. Und wer dann immer noch nicht genug hat, wird in Unibibliotheken fündig. Hier gibt es tatsächlich eine Reihe neuerer Veröffentlichungen in internationalen Magazinen (z.B. verschiedene IEEE Publikationen) und natürlich Dissertationen, die noch mehr in die Tiefe gehen.

Literaturübersicht:

Übersicht Bücher zum Thema Schrittmotoren

Eine Auswahl an Büchern zu Schrittmotoren und elektrischen Antrieben

Felix Schörlin: “Mit Schrittmotoren steuern, regeln und antreiben”. Franzis, 1995. ISBN: 3-7723-6722-4
Sehr schönes, leicht verständlich geschriebenes Buch für Einsteiger. Betrachtet auch Resonanzen und einfache Versuchsaufbauten. Mit verschiedenen, ausführlich erläuterten Schaltungsbeispielen (TCA3717, L6203, diskrete Endstufen mit MOSFET und IGBTs), die allerdings nicht mehr dem aktuellen Stand entsprechen. Auch für 5-phasige Motoren einsetzbar. Das Controller-Beispiel mit dem ST6225 ist nicht mehr up to date, kann aber leicht auf andere Controller übertragen werden.

Friedrich Prautzsch: „Schrittmotor-Antriebe“. 3. Aufl., Franzis, 1996. ISBN: 3-7723-2183-6
Sehr kompakt, bietet einen schnellen aber nicht zu oberflächlichen Einstieg in das Thema. Elektrotechnik-Grundwissen ist von Vorteil. Nicht mehr ganz auf dem letzten Stand.

Erich Rummenich et al.: „Elektrische Schrittmotoren und –antriebe“. 3. Aufl., Expert 2005. ISBN: 3-8169-2458-1
Inhaltlich nicht mehr auf dem Stand der Technik. Interessant wegen der einfachen Versuchsaufbauten und für historische Betrachtungen

Takashi Kenjo: „Stepping motors and their microprocessor controls“. Oxford Science Publications, 1984. ISBN 0-19-859339-2
Sehr umfangreiches englisches Buch, bietet einen guten Einstieg mit historischem Überblick. Viele interessante Abbildungen von älteren Geräten und Realisierungsbeispielen. Dynamische Betrachtungen incl. der mathematischen Zusammenhänge, Schaltungsbeispiele mit Logiktabellen sowie Versuchsaufbauten. Mit Literaturverzeichnis zu jedem Kapitel

Dierk Schröder: „Elektrische Antriebe – Grundlagen“. 3. Aufl., Springer, 2007. ISBN: 978-3-540-72764-4
Allgemeines Buch zur elektrischen Antriebstechnik mit einem Abschnitt über Schrittmotoren. Umfangreiches Literatur- und Sachverzeichnis

Gert Hagmann: „Leistungselektronik – Grundlagen und Anwendungen in der elektrischen Antriebstechnik“. 3. Aufl., Aula, 2006. ISBN:978-3-89104-700-2
Gutes Grundlagenbuch für alle, die selbst Schaltungen zur Ansteuerung von Motoren entwickeln möchten. Gutes Sachverzeichnis.

Paul Acarnely: “Stepping Motors: A Guide to Theory and Practice”. 4th edition, Institution of Engineering and Technology, 2002. ISBN: 978-0852964170
Englisches Fachbuch. Das Thema Mikroschritt fehlt leider. Sonst sehr detailliert, incl. der zur Beschreibung und Berechnung erforderlichen Mathematik. Weitere Themen: Open und closed loop Betrieb, statische Betrachtung der Momente, Highspeed Betrieb, Resonanzdämpfung. Umfangreiche Literaturverweise.

Handbuch Elektrische Kleinantriebe [Gebundene Ausgabe]
Hans-Dieter Stölting (Herausgeber), Eberhard Kallenbach (Herausgeber). 4. Aufl., Hanser, 2011. ISBN-13: 978-3446423923
Habe ich selbst noch nicht gelesen, sollte aber trotzdem nicht unerwähnt bleiben, weil es gerade in neuer Auflage erschienen ist. Somit besteht die Chance, auch zu neueren Themen Informationen zu finden.

Die Sache mit der Spannung

Sonntag, April 24th, 2011

Eine der häufigsten Fragen, die mir durch Kunden von mechapro in E-Mails gestellt wird, lautet sinngemäß etwa so: „Ich habe einen Schrittmotor mit einer Nennspannung von 2,8V, in der Dokumentation zu Ihrer Schrittmotor-Endstufe ist aber von einem Spannungsbereich von 15-42V die Rede. Kann ich den Motor trotzdem an Ihrer Karte betreiben?“. Die Antwort ist „ja“. Aber warum ist das so, bzw. warum ist die Motornennspannung soviel niedriger als die Versorgungsspannung des Schrittmotor-Treibers?

Die Motornennspannung ergibt sich aus dem Wicklungswiderstand und dem maximal zulässigen Wicklungsstrom durch Anwendung des Ohmschen Gesetzes (R=U/I bzw. U=R*I). Oder anders ausgedrückt: Will man einfach nur Spannung an die Wicklung legen (ohne Stromregelung, PWM o.ä.), darf diese maximal so groß sein wie die Motornennspannung, da sonst der zulässige Wicklungsstrom überschritten werden kann. Diese Betriebsart wird auch als Konstantspannungsbetrieb bezeichnet, da die Spannung konstant gehalten wird. Zur Ansteuerung eines 2-phasigen Schrittmotors werden lediglich 4 Transistoren (unipolarer Motor) bzw. 2 H-Brücken (bipolarer Motor) benötigt. Es handelt sich also um ein sehr einfaches und preiswertes Verfahren. Bedeutender Nachteil sind die Einschränkungen bei der erreichbaren Drehzahl bzw. beim Drehmoment im oberen Drehzahlbereich. Außerdem ist kein Mikroschritt möglich. Das sind auch die Gründe dafür, dass dieses Verfahren heute nur noch bei low-cost Anwendungen eingesetzt wird, bei denen diese Einschränkungen keine Rolle spielen. Die wohl verbreitetste, aber nicht unbedingt bekannteste Anwendung ist der Einsatz von Schrittmotoren in Zeigerinstrumenten, vor allem im Automobil-Sektor.

Tacho Porsche 911

Instrumenteneinsatz Porsche 911(996), Hersteller VDO

Schrittmotor aus Porschetacho

Zeigerinstrument mit Schrittmotor aus Posche 911(996)

Wesentlich verbreiteter ist die sogenannte Konstantstromansteuerung. Hierbei wird durch einen Stromregler dafür gesorgt, dass der Motor unabhängig von der Versorgungsspannung mit höchstens dem eingestellten Wicklungsstrom betrieben wird. Durch den Stromregler kann die Versorgungsspannung deutlich höher gewählt werden als die Motornennspannung. Dies führt zu einem deutlich beschleunigten Stromanstieg und damit letztlich dazu, dass das Drehmoment des Motors erst bei deutlich höheren Drehzahlen bzw. Pulsraten abnimmt.

Simulation Stromanstiegszeit

Simulation der Stromanstiegszeit für einen PK268-E2.0 bei Konstantspannungs- und Konstantstrombetrieb

Das oben gezeigte Simulationsergebnis macht den Vorteil des Konstantstrombetriebes sehr plakativ deutlich. Bei Konstantspannungsbetrieb (U=3,18V) dauert es 8-10ms, bis der Wicklungsstrom annähernd den Nennstrom erreicht hat. Wird der Motor mit einer Pulsrate von 200 Schritten/s (entsprechend einer Umdrehung/s bzw. 5ms Pulsbreite) betrieben, liegt der mittlere Strom in der Wicklung bei nur noch etwas mehr als 1A, so dass das erreichte Moment gegenüber dem Haltemoment mehr als halbiert ist. Im Konstantstrombetrieb ist die Zeit zum Erreichen des Nennstroms je nach verwendeter Spannung hingegen kleiner als eine halbe Millisekunde, so dass erst bei ca. 10-facher Geschwindigkeit das Drehmoment soweit abfällt wie bei Konstantspannungsbetrieb.

Hinweis: Die Schaltzeiten der Transistoren wurden in der Simulation nicht berücksichtigt, da sie gegenüber den betrachteten Effekten klein sind.