Posts Tagged ‘Stromregler’

Schrittmotor im Servo-Betrieb – Closed loop or not so closed?

Mittwoch, Januar 18th, 2012

Immer mehr Hersteller bieten Schrittmotoren mit Positionsfeedback (Encoder) und entsprechende Steuerungen an. Grund genug, Vor- und Nachteile dieser Systeme ein wenig unter die Lupe zu nehmen.

Die klassische Anwendungsweise für Schrittmotoren ist der sogenannte „open loop Betrieb“, also der Einsatz ohne Positionsrückmeldung. Durch die hohe Polpaarzahl folgt der Schrittmotor dem extern vorgegebenen Drehfeld präzise, zumindest solange die Drehzahl nicht zu hoch ist und die Last das vom Motor abgegebene Moment nicht überschreitet. Fall das passiert, kommt der Motor aus dem Tritt und verliert Schritte. Und genau davor haben viele Entwickler in industriellen Anwendungen Angst: Was, wenn die Mechanik mit der Zeit schwergängiger wird? Was passiert, wenn der Schrittverlust nicht erkannt wird? Welche Folgefehler können auftreten? Oft wurde dann in der Vergangenheit zu deutlich teureren Servomotoren gegriffen (Anmerkung: Mit Servomotor sind i.A. Synchronmotoren gemeint, die mit mehreren hundert Volt Zwischenkreisspannung betrieben werden).

Inzwischen sind Schrittmotoren mit Encodern, also optischen Drehgeber, günstig und in großer Typenvielfalt erhältlich. Damit wird es möglich, Schrittverluste zu erkennen und den Antrieb entsprechend nachzuführen. Geht man noch einen Schritt weiter, kann ein Schrittmotor wie ein Servomotor betrieben werden, d.h. mit feldorientier Regelung. Der wesentliche Unterschied zum „überwachten“ Schrittmotorbetrieb (manchmal von den Herstellern auch als „semi closed loop“ bezeichnet), liegt in der Ansteuerung der Wicklungen. Ein Servomotor wird vom Regler nur mit so viel Strom beaufschlagt, wie zum Ausgleich der Regelabweichung erforderlich ist. Ein normaler Schrittmotortreiber steuert die Spule hingegen ständig mit vollem Nennstrom an. Die feldorientierte Regelung ist also deutlich energieeffizienter. Hinzu kommt, dass der Regler ständig einen Winkel von 90° elektrisch zwischen Rotor und Drehfeld aufrecht erhält, so dass das maximal mögliche Drehmoment erzeugt wird.

Auf der anderen Seite muss der Anwender aber bei der Inbetriebnahme den Regler geeignet parametrieren. Gute Lösungen bieten hier durch (mehr oder weniger) intelligente, automatische Funktionen zur Regler-Parametrierung Unterstützung an. Letztlich obliegt es aber dem Anwender, für die jeweilige Applikation, d.h. entsprechend der mechanischen Steifigkeit des Systems und der anzutreibenden Last, die geeigneten Regler-Einstellungen zu finden. Ein System mit reiner Positionsüberwachung ist dementsprechend einfacher in der Handhabung, nutzt aber die Vorteile der Positionsrückführung nur teilweise aus.

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder

Schrittmotor (Typ PK266) mit rückseitig angeflanschtem Encoder (Quelle: Oriental Motor, Gesammtkatalog PK2-Serie, 2009)

Auch BLDC-Motoren (auch EC- oder bürstenlose Motoren genannt), sind heute preiswert und in vielen Versionen erhältlich. Für sie gilt in Hinblick auf Effizienz und Inbetriebnahme Aufwand das gleiche wie für Schrittmotoren im Servo-Betrieb. Welcher Motortyp am besten geeignet ist, ist von der Anwendung abhängig. Schrittmotoren bieten, ähnlich wie Torquemotoren, den Vorteil, dass sie bei niedrigen Drehzahlen ein verhältnismäßig hohes Drehmoment liefern. Nachteilig ist unter Umständen das ausgeprägte Rastmoment, was aber auch genutzt werden kann, um die Last bei abgeschaltetem Antrieb in Position zu halten. BLDC-Motoren hingegen schaffen aufgrund der niedrigeren Polpaarzahl deutlich höhere Drehzahlen, liefern aber wenig Drehmoment. Wenn also hohes Drehmoment bei niedrigen Drehzahlen gefordert ist, ist der Schrittmotor auch für Servo-Anwendungen die richtige Wahl und kann sogar ein Getriebe überflüssig machen, dass bei Einsatz eines BLDC-Motors erforderlich wäre. Voraussetzung ist ein geeignetes Leistungsteil mit guter Benutzerführung bei der Inbetriebnahme von Antrieb und Regelung und zumindest regelungstechnische Grundkenntnisse beim Anwender.

Resonanzen bei Schrittmotoren

Donnerstag, Juli 28th, 2011

Gesteuert betriebene Schrittmotoren weisen, je nach Last und Art der Ansteuerung, unterschiedlich starke Resonanzbereiche auf. Der folgende Beitrag gibt einen kurzen Überblick über die Ursache und mögliche Lösungen, mit denen das Auftreten von Resonanzen und damit letztlich ein Schrittverlust vermiedenen werden kann.

Resonanzen bei Schrittmotoren lassen sich grob in zwei Bereiche unterteilen, die unterschiedliche Ursachen haben. Im unteren Frequenzbereich (bis ca. 250 Hz) handelt es sich um mechanisch angeregte Schwingungen, die im Bereich der Eigenfrequenzen der Mechanik Aufgrund mangelnder Dämpfung kritisch werden können. Im mittleren bis oberen Frequenzbereich hat man es dagegen mit einer geringer werdenden Dämpfung aufgrund der induzierten Gegenspannung (EMK) und Wechselwirkungen mit der Treiberschaltung (Endstufe) zu tun.

Resonanzen im unteren Frequenzbereich

Bei der Betrachtung des Lastwinkels wurde bereits diskutiert, dass ein Schrittmotor nur dann ein Drehmoment erzeugt, wenn der Winkel zwischen dem elektromagnetischem Feld und Rotor ungleich null ist. Wir der Motor ohne Last mit konstanter Frequenz betrieben, ergibt sich bei jedem Umschalten einer Wicklung eine schlagartige Änderung dieses Winkels. Der Rotor bewegt sich jedoch annähernd gleichförmig, so dass der Lastwinkel stark schwankt. Es ergibt sich ein starkes Pendelmoment. Nur der Gleichanteil dieses Pendelmoments steht zum Antreiben von Lasten zur Verfügung. Bei niedriger Dämpfung und ungünstiger Anregungsfrequenz wird der Rotor zum Schwingen angeregt und das System schaukelt sich weiter auf. Die betroffenen Frequenzen hängen stark von der angekoppelten Last und der damit verbundenen Reibung ab. Umso geringer die Reibung und die Trägheit im System sind, umso größer ist die Gefahr von Resonanzproblemen. In weniger „geschönten“ Drehmomentkurven sind Resonanzstellen gut durch Einbrüche im Drehmomentverlauf zu erkennen. Das vorhanden sein eines solchen Einbruchs bedeutet aber nicht, dass der Motor im entsprechenden Frequenzbereich kein oder kaum Drehmoment erzeugt. Ist der Motor entsprechend belastet, erzeugt er sehr wohl ein entsprechendes Moment. Man muss aber darauf achten, dass die Last oder die Reibung nicht zu klein werden können.

Resonanzen im unteren Frequenzbereich sind besonders bei Ansteuerung im Vollschritt und zum Teil auch bei Halbschrittbetrieb ausgeprägt. Der Betrieb von Schrittmotoren im Vollschritt kann daher allgemein nicht empfohlen werden. Deutlich weniger Resonanzprobleme treten bei Ansteuerung im Mikroschritt auf. Probleme kann aber auch die anzutreibende Mechanik machen, wenn sie nicht ausreichend steif ist und Eigenfrequenzen in Bereichen aufweist, die vom Motor angeregt werden können. Sind die kritischen Frequenzbereiche bekannt und liegen sie unterhalb der Arbeitsgeschwindigkeit, empfiehlt es sich, den Motor schnell durch die kritischen Bereiche hindurch zu beschleunigen. Auch die geeignete Wahl von Getrieben oder anderen Übersetzungsstufen kann helfen, Resonanzbereiche zu meiden. Falls das nicht ausreicht, können mechanische Dämpfer Abhilfe schaffen. Diese gibt es z.B. als preiswerte Flanschdämpfer, die zwischen Motor und Mechanik montiert werden. Oder als Silikongel Dämpfer in Scheibenform, die z.B. auf das hintere Wellenende eines Schrittmotors montiert werden können. Diese Lösung ist aber vergleichsweise teuer. Flanschdämpfer verschlechtern dagegen die Kühlung des Motors über die Struktur der Mechanik, da kein direkter Kontakt mehr besteht. Außerdem stellen sie eine zusätzliche Nachgiebigkeit zwischen Motor und Last dar und verringern so die Positioniergenauigkeit. Gute Ergebnisse erreicht man auch durch den Einsatz eines Zahnriemens statt einer Metallbalgkupplung zwischen Motor und Last. Allerdings muss das möglichst schon in der Planungsphase berücksichtigt werden, da sonst größere Änderungen an der Mechanik erforderlich werden.

Mechanische Dämpfer für den Einsatz an Schrittmotoren. Links: Flanschdämpfer, rechts Wellendämpfer.

Resonanzen im mittleren Geschwindigkeitsbereich (engl. „midband resonances“)

Resonanz Erscheinungen im mittleren Frequenzbereich sind meist deutlich weniger ausgeprägt als im Bereich der mechanischen Eigenfrequenzen. Während die mechanische Dämpfung (aufgrund von Reibung usw.) mit der Geschwindigkeit leicht ansteigt, erreicht die Dämpfung aufgrund der Gegen-EMK ein lokales Maximum und fällt dann wieder ab. Dieses Verhalten ist auf die Wicklungsinduktivität zurück zu führen, die dafür sorgt, dass mit steigender Drehzahl der Winkel zwischen induzierter Spannung und dem daraus resultierenden Strom größer wird, was die (Verlust-)Leistung kleiner werden lässt. Durch ihren hohen Innenwiderstand haben moderne Choppertreiber keinen zusätzlichen dämpfenden Einfluss auf den Motor. Es ergibt sich somit ein Geschwindigkeitsbereich, in dem die Dämpfung des Systems mit der Drehzahl abnimmt. Zusätzliche Probleme können sich im oberen Drehzahlbereich ergeben, wenn der Stromregler aufgrund der Wicklungsinduktivität und der schnellen Umpolvorgänge keine Wirkung mehr hat. Der Treiber arbeitet dann wie ein einfacher L/R-Treiber, so dass der Motorstrom direkt von der Versorgungsspannung abhängt. Ist diese nicht ausreichend mit Kondensatoren stabilisiert, kann es bei ungünstigen Verhältnissen (Ansteuerung des Motors mit einem Vielfachen des Netzripples) zu einem Aufschwingen des Motors kommen.

Abhilfe schaffen z.T. schaltungstechnische Maßnahmen, die aber nicht trivial sind und immer auf den jeweiligen Motor abgestimmt werden müssen. Schwingungsvorgänge lassen sich als eine dem Betriebsstrom überlagerte Sinuskomponente messen. Die Messung kann in der Zuleitung zu den Endstufentransistoren erfolgen. Über eine Filterstufe kann dann der Wechselanteil identifiziert werden. Zur Schwingungskompensation gibt es zwei mögliche Vorgehensweisen. Eine Möglichkeit besteht darin, eingehende Schrittimpulse mehr oder weniger stark zu verzögern. Dadurch ergibt sich eine zusätzliche Phasenverschiebung zwischen Rotor und Feld. Die andere Möglichkeit besteht darin, die Motorströme so zu modulieren, dass der Strom erhöht wird, wenn der Rotor zu stark nacheilt und reduziert wird, wenn der Motor zu sehr voreilt. Der Aufwand zur wirksamen Unterdrückung von Schwingungen kann also je nach Aufbau des Systems erheblich werden.

Resonanzen bei Closed-Loop Betrieb

Inzwischen lässt sich ein Trend erkennen, auch Schrittmotoren geregelt zu betreiben. Die Firma Nanotec bietet z.B. schon seit einiger Zeit verschiedene Treiber an, die einen Encoder-Eingang haben und neben einer reinen Schrittverlusterkennung auch einen geregelten Betrieb ermöglichen („closed loop“). Trinamic zielt mit seinen Stallguard-2 Treibern in die gleiche Richtung, vermeidet aber den Aufwand für einen Drehgeber, in dem eine sensorlose Lastwinkelerkennung zum Einsatz kommt. Aber auch mit geregelten Antrieben ist man vor Resonanzen nicht sicher. Zunächst einmal müssen Regler vernünftig abgestimmt werden, was eine gewisse Erfahrung erfordert. Zu hohe Reglereinstellungen führen zur Instabilität des Systems, zu niedrige Einstellungen bedingen hohe Nachgiebigkeiten und damit niedrigere Dynamik und Positioniergenauigkeit.

Aber auch die beste Regelung nützt nichts, wenn die anzutreibende Mechanik nicht steif genug ist, wie folgendes Beispiel aus der Praxis verdeutlicht. Im Rahmen eines Beratungsprojektes sollte ein Schrittmotorantrieb für eine Dosierpumpe optimiert werden, die über einen Zahnriemen angetrieben wurde. Nachdem man im gesteuerten Betrieb bei hohen Drehzahlen gelegentlich Schrittverluste festgestellt hatte, wurde das System auf geregelten Betrieb umgestellt. Jetzt traten allerdings (abhängig von weiteren Einflüssen, die nicht publiziert werden dürfen und hier auch nicht relevant sind) Störgeräusche auf. Mittels Messungen konnte eine extreme Drehmomentwelligkeit im Antriebsstrang nachgewiesen werden, obwohl es auf der Lastseite hierfür keinen erkennbaren Grund gab. Die auftretenden Frequenzen lagen (drehzahlabhängig) bei wenigen Hertz, die Amplitude erreichte z.T. mehr als ein Viertel des Motornennmomentes.

Neben einer ungünstigen Auslegung des Zahnriemens selbst (zu geringer Umschlingungswinkel und zu geringe Zähnezahl) konnte letztlich der federbelastete Riemenspanner als Hauptursache der Probleme ausgemacht werden. Obwohl die Spiralfeder subjektiv eine hohe Steifigkeit aufwies, führten Lastwechsel im Riementrieb dazu, dass sich die Riemenspannung über den Vorspannmechanismus lastabhängig variierte. Nachdem die Feder entfernt und der Riemen statisch vorgespannt wurde, konnten die Reglereinstellungen deutlich erhöht werden. Der Antrieb lief anschließend geräuschlos und mit deutlich reduziertem Drehmoment-Ripple.

Stromregelung von Schrittmotoren – Auf das Abschalten kommt es an

Sonntag, Mai 15th, 2011

Bei der Ansteuerung von Schrittmotoren haben sich schon längst Treiber mit Konstantstromregelung durchgesetzt. Ansteuerungen mit Konstantspannung findet man nur noch vereinzelt, z.B. bei Zeigerinstrumenten im Automobil, siehe vorletzter Beitrag. Entscheidend für die Performance einer Schrittmotor-Endstufe mit Konstantspannungsregelung ist, neben der Höhe der Versorgungsspannung und dem Wicklungsstrom vor allem die Phase, in der der Strom in der Wicklung wieder abgebaut wird. Die unterschiedlichen Verfahren erläutert der folgende Beitrag.

Induktivitäten versuchen, aufgrund der in ihnen gespeicherten Energie, nach dem Abschalten der Spannung den durch sie fließenden Strom aufrecht zu erhalten. Je nach dem, wie die Wicklung abgeschaltet wird, wird der Strom schneller oder langsamer abgebaut. Davon hängt letztlich auch ab, wie schnell der Strom in die Gegenrichtung aufgebaut werden kann, wenn der Schrittmotor schnell läuft und die Wicklungen oft umgepolt werden. Beim slow decay erfolgt der Stromabbau langsam, was bei hohen Drehzahlen (d.h. häufigem Umgepolen) dazu führen kann, dass der Strom nicht schnell genug abgebaut werden kann. Insbesondere im Mikroschritt ergibt sich dann eine deutliche Abweichung von der gewünschten, sinusähnlichen Stromkurve, die auch zu hörbaren Geräuschen durch Schwankungen im Drehmoment führen kann.

Stromverlauf bei slow decay Stromregelung

Stromverlauf bei slow decay Stromregelung (Quelle: „A new microstepping motor driver IC“, Kongress-Paper über den A3977 zur PCIM 2001, Allegro Micro).

Beim „slow decay„, also dem langsamen Abklingen des Stromes, wird die Wicklung zunächst (während der deadtime) über die Dioden der Vollbrücke kurzgeschlossen, bevor einer oder beide unteren FETs bzw. Transistoren der Brücke eingeschaltet werden (prinzipiell können alternativ auch die oberen FETs eingeschaltet werden).  Man kann die beiden FETs gedanklich auch gegen 2 Widerstände ersetzen, die mit der Motorwicklung in Reihe geschaltet werden. Die Phase zwischen dem Ein-Zustand und dem Kurzschließen der Wicklung (Deadtime bzw. Totzeit) wird durch die Dioden überbrückt. Bei FETs wird diese Aufgabe automatisch von den internen Body-Dioden übernommen, bei Transistorbrücken müssen unbedingt schnelle externe Dioden verwendet werden. Wird anschließend nur ein FET eingeschaltet (Q4 im Bild), läuft der Strom auf der Gegenseite über die Diode. Da der Spannungsabfall über den Dioden meist größer ist als der in den FETs, schalten moderne Treiber meist beide FETs ein. Das Verfahren wird auch „synchronous rectification“ oder „synchronous decay“ genannt. Das folgende Bild zeigt die sich ergebenden Strompfade.

Strompfade bei slow-decay Stromregelung

Strompfade in einer FET-Brücke bei slow-decay Stromregelung

Deutlich schneller geht der Stromabbau beim „fast decay„, also dem schnellen Abklingen des Stromes. Nach der deadtime wird die Wicklung durch Umpolen kurzgeschlossen, bis der Strom auf Null abgeklungen ist. Auch hier kann der Kurzschluss entweder über die Dioden oder über gezieltes Schalten der FETs erfolgen. Dabei wird die in der Wicklung gespeicherte Energie in die Versorgung zurück gespeist, was zwar die Verluste mindert, aber auch zu einem höheren Ripple im Strom und in der Versorgungsspannung führt. Außerdem kann der schnelle Stromabbau dazu führen, dass bei niedrigen Drehzahlen der Mittelwert des Wicklungsstromes deutlich kleiner ist als eigentlich vorgesehen.

Strompfade bei fast-decay Stromregelung

Strompfade in einer FET-Brücke bei fast-decay Stromregelung

Im „mixed decay“ werden die Vorteile beider Verfahren vereint. Der Strom wird zunächst bis zu einer (meist in mehreren Stufen einstellbaren) Schwelle per fast decay abgebaut, bevor auf slow decay umgeschaltet wird. Zusätzlich wird in Phasen, in denen der Strom aufgebaut werden soll (also vom Nulldurchgang bis zum max. Phasenstrom) nur mit slow decay gearbeitet, wärend im 2. Teil der Halbwelle mit mixed decay gearbeitet wird. Das folgende Bild veranschaulicht die unterschiedlichen Phasen am Beispiel des A3977 im 1/8 Schritt Mikroschritt.

Phasenstrom mixed decay

Phasenstrom bei mixed decay Stromregelung, Unterteilung in Phasen des Stromauf- und -abbaus (Quelle: Datenblatt A3977, Allegro Micro).

Der unterschiedliche Verlauf des Motorstroms sieht dann in den mixed decay Phasen wie folgt dargestellt aus:

Stromverlauf mixed decay

Stromverlauf mixed decay (Quelle: „A new microstepping motor driver IC“, Kongress-Paper über den A3977 zur PCIM 2001, Allegro Micro).

Weitere Literatur zum Thema: „Current Recirculation and Decay Modes“, Application Report SLVA321–March 2009, Texas Instruments

Übersicht über gängige integrierte Schrittmotor-Treiber

Mittwoch, April 27th, 2011

Soll für eine Anwendung eine neue Schrittmotor-Steuerung entwickelt werden, geht die Suche nach den geeigneten Treiber-Bausteinen los. Neben den „alten Bekannten“ wie z.B. L293D, L297/L298 oder PBL3717A gibt es heute eine interessante Auswahl an voll integrierten Lösungen mit Mikroschritt und vielen weiteren interessanten Funktionen. Die folgende Tabelle gibt eine Übersicht über die bekanntesten ICs und deren wichtigeste Eigenschaften. Nicht zu allen Bauteilen sind über die Hersteller Demo-Boards erhältlich. Daher sind, soweit bekannt, exemplarisch einige Produkte aufgeführt, in denen die genannten ICs enthalten sind. Um die Darstellung übersichtlich zu halten, sind nur die Basisdaten genannt. Eine umfangreichere Darstellung steht zum Download zur Verfügung.

 

 

 

 

 

Bauteil Hersteller max.
Mikrostep
Nennstrom Spannung I/O Anmerkungen
Produkte
Amis30624 On Semi 0,57A 7-29V I²C int. Motioncontroller
Amis30522 On Semi 1/32 1,5A 6-30V Takt-/Dir,
SPI f. Konfig.
mit Stalldetection
A3959
(=IMT-903)
Allegro Micro beliebig 3,0A 10-50V Takt/Dir Slider SFX,
SMCI33
A3977
A3979
Allegro Micro 1/8 / 1/16 2,5A 8-35V Takt/Dir Tiny-Step II
A3986 Allegro Micro 1/16 >5,0A 12-50V Takt-/Dir HEM-545,
SMCI47-S
LMD18245 National Semi beliebig 3,0A 12-55V Brake/Dir
L293 ST 1,0A 5-36V parallel, incl. Enable
L297 ST Voll/Halb Takt/Dir f. externe H-Brücken
3D-Step
L298 ST 2,0A 8-46V parallel, incl. Enable 3D-Step
L6506 ST beliebig Takt/Dir f. externe H-Brücken
HP-Step.pro
L6201/L6202
L6203
ST 1,5A/4,0A 12-48V parallel, incl. Enable HP-Step.pro
L6208 ST Voll/Halb 2,8A 12-52V Takt/Dir µStep m. ext. DAC
L6219 ST 1/4 0,75A 10-46V Phase/Current µStep m. ext. DAC
PBL3717A ST, Ericsson 1/4 1,0A 10-46V Phase/Current µStep m. ext. DAC
PBL3770A
UC3770A
Ericsson, TI Voll/Halb 1,5A 10-40V Phase/Current
TA8435H
(=IMT-901)
Toshiba 1/8 1,5A 24V Takt/Dir Step3N (Fa. Lewetz)
TB62201
(=IMT-902)
Toshiba 1/16 1,2A 20-34V parallel, incl. Enable
TB6560A Toshiba 1/16 3,0A 5-34V Takt/Dir Imax f. HQFP: 1,5A
TMC236
TMC246
Trinamic 1/16 1,5A 7-34V SPI (12-bit) TMC246 m. Stalldetection
TMC239
TMC249
Trinamic 1/16 >4,0 7-34V SPI (12-bit) TMC249 m. Stalldetection
TMC261
TMC262
Trinamic 1/256 1,2A/>5,0A 9-59V Takt/Dir,
SPI f. Konfig.
lastabhängiger Strom

schrittmotortreiber.pdf

Die Sache mit der Spannung

Sonntag, April 24th, 2011

Eine der häufigsten Fragen, die mir durch Kunden von mechapro in E-Mails gestellt wird, lautet sinngemäß etwa so: „Ich habe einen Schrittmotor mit einer Nennspannung von 2,8V, in der Dokumentation zu Ihrer Schrittmotor-Endstufe ist aber von einem Spannungsbereich von 15-42V die Rede. Kann ich den Motor trotzdem an Ihrer Karte betreiben?“. Die Antwort ist „ja“. Aber warum ist das so, bzw. warum ist die Motornennspannung soviel niedriger als die Versorgungsspannung des Schrittmotor-Treibers?

Die Motornennspannung ergibt sich aus dem Wicklungswiderstand und dem maximal zulässigen Wicklungsstrom durch Anwendung des Ohmschen Gesetzes (R=U/I bzw. U=R*I). Oder anders ausgedrückt: Will man einfach nur Spannung an die Wicklung legen (ohne Stromregelung, PWM o.ä.), darf diese maximal so groß sein wie die Motornennspannung, da sonst der zulässige Wicklungsstrom überschritten werden kann. Diese Betriebsart wird auch als Konstantspannungsbetrieb bezeichnet, da die Spannung konstant gehalten wird. Zur Ansteuerung eines 2-phasigen Schrittmotors werden lediglich 4 Transistoren (unipolarer Motor) bzw. 2 H-Brücken (bipolarer Motor) benötigt. Es handelt sich also um ein sehr einfaches und preiswertes Verfahren. Bedeutender Nachteil sind die Einschränkungen bei der erreichbaren Drehzahl bzw. beim Drehmoment im oberen Drehzahlbereich. Außerdem ist kein Mikroschritt möglich. Das sind auch die Gründe dafür, dass dieses Verfahren heute nur noch bei low-cost Anwendungen eingesetzt wird, bei denen diese Einschränkungen keine Rolle spielen. Die wohl verbreitetste, aber nicht unbedingt bekannteste Anwendung ist der Einsatz von Schrittmotoren in Zeigerinstrumenten, vor allem im Automobil-Sektor.

Tacho Porsche 911

Instrumenteneinsatz Porsche 911(996), Hersteller VDO

Schrittmotor aus Porschetacho

Zeigerinstrument mit Schrittmotor aus Posche 911(996)

Wesentlich verbreiteter ist die sogenannte Konstantstromansteuerung. Hierbei wird durch einen Stromregler dafür gesorgt, dass der Motor unabhängig von der Versorgungsspannung mit höchstens dem eingestellten Wicklungsstrom betrieben wird. Durch den Stromregler kann die Versorgungsspannung deutlich höher gewählt werden als die Motornennspannung. Dies führt zu einem deutlich beschleunigten Stromanstieg und damit letztlich dazu, dass das Drehmoment des Motors erst bei deutlich höheren Drehzahlen bzw. Pulsraten abnimmt.

Simulation Stromanstiegszeit

Simulation der Stromanstiegszeit für einen PK268-E2.0 bei Konstantspannungs- und Konstantstrombetrieb

Das oben gezeigte Simulationsergebnis macht den Vorteil des Konstantstrombetriebes sehr plakativ deutlich. Bei Konstantspannungsbetrieb (U=3,18V) dauert es 8-10ms, bis der Wicklungsstrom annähernd den Nennstrom erreicht hat. Wird der Motor mit einer Pulsrate von 200 Schritten/s (entsprechend einer Umdrehung/s bzw. 5ms Pulsbreite) betrieben, liegt der mittlere Strom in der Wicklung bei nur noch etwas mehr als 1A, so dass das erreichte Moment gegenüber dem Haltemoment mehr als halbiert ist. Im Konstantstrombetrieb ist die Zeit zum Erreichen des Nennstroms je nach verwendeter Spannung hingegen kleiner als eine halbe Millisekunde, so dass erst bei ca. 10-facher Geschwindigkeit das Drehmoment soweit abfällt wie bei Konstantspannungsbetrieb.

Hinweis: Die Schaltzeiten der Transistoren wurden in der Simulation nicht berücksichtigt, da sie gegenüber den betrachteten Effekten klein sind.