Bei der Ansteuerung von Schrittmotoren haben sich schon längst Treiber mit Konstantstromregelung durchgesetzt. Ansteuerungen mit Konstantspannung findet man nur noch vereinzelt, z.B. bei Zeigerinstrumenten im Automobil, siehe vorletzter Beitrag. Entscheidend für die Performance einer Schrittmotor-Endstufe mit Konstantspannungsregelung ist, neben der Höhe der Versorgungsspannung und dem Wicklungsstrom vor allem die Phase, in der der Strom in der Wicklung wieder abgebaut wird. Die unterschiedlichen Verfahren erläutert der folgende Beitrag.
Induktivitäten versuchen, aufgrund der in ihnen gespeicherten Energie, nach dem Abschalten der Spannung den durch sie fließenden Strom aufrecht zu erhalten. Je nach dem, wie die Wicklung abgeschaltet wird, wird der Strom schneller oder langsamer abgebaut. Davon hängt letztlich auch ab, wie schnell der Strom in die Gegenrichtung aufgebaut werden kann, wenn der Schrittmotor schnell läuft und die Wicklungen oft umgepolt werden. Beim slow decay erfolgt der Stromabbau langsam, was bei hohen Drehzahlen (d.h. häufigem Umgepolen) dazu führen kann, dass der Strom nicht schnell genug abgebaut werden kann. Insbesondere im Mikroschritt ergibt sich dann eine deutliche Abweichung von der gewünschten, sinusähnlichen Stromkurve, die auch zu hörbaren Geräuschen durch Schwankungen im Drehmoment führen kann.
Beim „slow decay„, also dem langsamen Abklingen des Stromes, wird die Wicklung zunächst (während der deadtime) über die Dioden der Vollbrücke kurzgeschlossen, bevor einer oder beide unteren FETs bzw. Transistoren der Brücke eingeschaltet werden (prinzipiell können alternativ auch die oberen FETs eingeschaltet werden). Man kann die beiden FETs gedanklich auch gegen 2 Widerstände ersetzen, die mit der Motorwicklung in Reihe geschaltet werden. Die Phase zwischen dem Ein-Zustand und dem Kurzschließen der Wicklung (Deadtime bzw. Totzeit) wird durch die Dioden überbrückt. Bei FETs wird diese Aufgabe automatisch von den internen Body-Dioden übernommen, bei Transistorbrücken müssen unbedingt schnelle externe Dioden verwendet werden. Wird anschließend nur ein FET eingeschaltet (Q4 im Bild), läuft der Strom auf der Gegenseite über die Diode. Da der Spannungsabfall über den Dioden meist größer ist als der in den FETs, schalten moderne Treiber meist beide FETs ein. Das Verfahren wird auch „synchronous rectification“ oder „synchronous decay“ genannt. Das folgende Bild zeigt die sich ergebenden Strompfade.
Deutlich schneller geht der Stromabbau beim „fast decay„, also dem schnellen Abklingen des Stromes. Nach der deadtime wird die Wicklung durch Umpolen kurzgeschlossen, bis der Strom auf Null abgeklungen ist. Auch hier kann der Kurzschluss entweder über die Dioden oder über gezieltes Schalten der FETs erfolgen. Dabei wird die in der Wicklung gespeicherte Energie in die Versorgung zurück gespeist, was zwar die Verluste mindert, aber auch zu einem höheren Ripple im Strom und in der Versorgungsspannung führt. Außerdem kann der schnelle Stromabbau dazu führen, dass bei niedrigen Drehzahlen der Mittelwert des Wicklungsstromes deutlich kleiner ist als eigentlich vorgesehen.
Im „mixed decay“ werden die Vorteile beider Verfahren vereint. Der Strom wird zunächst bis zu einer (meist in mehreren Stufen einstellbaren) Schwelle per fast decay abgebaut, bevor auf slow decay umgeschaltet wird. Zusätzlich wird in Phasen, in denen der Strom aufgebaut werden soll (also vom Nulldurchgang bis zum max. Phasenstrom) nur mit slow decay gearbeitet, wärend im 2. Teil der Halbwelle mit mixed decay gearbeitet wird. Das folgende Bild veranschaulicht die unterschiedlichen Phasen am Beispiel des A3977 im 1/8 Schritt Mikroschritt.
Der unterschiedliche Verlauf des Motorstroms sieht dann in den mixed decay Phasen wie folgt dargestellt aus:
Weitere Literatur zum Thema: „Current Recirculation and Decay Modes“, Application Report SLVA321–March 2009, Texas Instruments