Die richtige Spannung für Schrittmotorsteuerungen – Kriterien zur Auswahl

April 25th, 2016

Das Schrittmotoren an modernen Steuerungen mit Stromregelung üblicherweise mit Spannungen betrieben werden, die deutlich über der Motornennspannung liegt, ist den meisten Anwendern bekannt und wurde hier bereits vor 5 Jahren im Beitrag „Die Sache mit der Spannung“ besprochen. Doch wie hoch sollte die Spannung gewählt werden? Umso höher die Spannung, umso mehr Drehmoment liefert der Motor im oberen Drehzahlbereich. Also liegt es nahe, die Spannung so hoch wie möglich zu wählen. Im nachfolgenden Beitrag möchte ich diskutieren, welche Grenzen bei der Wahl der Versorgungsspannung beachtet werden müssen.

Vorsicht Spannung

Vorsicht Spannung! Welche Versorgungsspannung ist bei Einsatz eines Schrittmotors die richtige?

Regulatorische Einschränkungen

Neben internen Vorgaben (Werksnormen o.ä.) sind hier vor allem Normen und gesetzliche Vorgaben der Märkte zu beachten, in welche die jeweilige Maschine oder Anlage geliefert werden soll. Für den europäischen Markt ist hier insbesondere die neue Niederspannungsrichtlinie 2014/35/EU relevant (gültig seit 20.4.2016, davor 2006/95/EG). Für den amerikanischen und kanadischen Markt ist es dagegen die UL508A. Die Niederspannungs-Richtlinie greift bei Einsatz von Gleichspannungen ab 75V bzw. Wechselspannungen ab 50V. Mit 48V Gleichspannung ist man also in Hinblick auf die Anwendung der Niederspannungsrichtlinie noch auf der „sicheren Seite“. Geht man darüber hinaus, müssen Motor, Motorsteuerung und Verdrahtung im Rahmen der Risikoanalyse betrachtet werden. Alle mit der Motorspannung verwendeten Komponenten müssen dann die Niederspannungs-Richtlinie erfüllen, diese muss dementsprechend auch in der CE-Konformitätserklärung berücksichtigt sein. Ist die UL508A anzuwenden, sind die Grenzen deutlich strenger. Die Prüfvorschriften für die UL508A berücksichtigen die Besonderheiten von Kleinspannungsantrieben nicht. Diese müssen vergleichbare Spannungsfestigkeiten wie Antriebsverstärker für den Netzspannungs-Betrieb aufweisen, was mit vertretbarem Aufwand nicht zu realisieren ist. Aus diesem Grund gibt es zumindest auf dem europäischen Markt keine Steuerungen für Kleinantriebe, welche die UL508A erfüllen. Bei Versorgung einer Steuerung aus einem sogenannten „Class 2“ Netzteil oder bei Einsatz eines „Limited Energy“ Stromkreises kann aber auch eine Motorsteuerung ohne UL-Zulassung verwendet werden. Class 2 Netzteile sind auf max. 30Veff beschränkt. Bei Limited Energy-Kreisen darf die Spannung bis 42,4V betragen, die Leistung ist auf 100VA begrenzt. Kommen mehrere Antriebe zum Einsatz, ist es zulässig, ein Netzteil größerer Leistung zu verwenden, wenn durch nachgeschaltete Sicherungen die Leistung in den einzelnen Kreisen entsprechen der Vorgaben in der Norm limitiert wird.

Schrittmotorsteuerung

Je nach Bauart der Schrittmotorsteuerung kommt eine single-Chip Lösung zum Einsatz, oder eine Endstufe mit externen MOSFETs. Gerade integrierte Lösungen sind in Hinblick auf die Versorgungsspannung limitiert. Typische maximale Spannungen liegen im Bereich 30-40V. Um ausreichend Reserven beim Bremsen (Rückspeisung durch den Motor) und für auftretende Schaltspitzen zu haben, sollte die Betriebsspannung mit einigem Abstand zur maximalen Versorgungsspannung des eingesetzten Treiber-ICs gewählt werden. Bei einsatzfertigen Geräten ist diese Reserve in der Regel bereits in den technischen Daten berücksichtigt, während bei „Motorshields“ (Treiber-Platinen für den Einsatz am Arduino oder Raspberry Pi meist mit minimaler Außenbeschaltung) in der Regel die Maximalwerte des Chips angegeben werden. Hier muss der Anwender selbst für entsprechende Sicherheitszuschläge sorgen, auch empfiehlt sich der Einsatz zusätzlicher Stützkondensatoren. Steuerungen für den Betrieb an Spannungen >=75VDC müssen die Niederspannungsrichtlinie erfüllen und entsprechend gekennzeichnet sein.

Schrittmotorsteuerung mit CE

Programmierbare Schrittmotorsteuerung für höhere Versorgungsspannungen mit CE-Kennzeichnung.

Motor

Bei Schrittmotoren gibt es von den Herstellern in der Regel keine offiziellen Spezifikationen, bis zu welcher Spannung ein Motor eingesetzt werden darf. Anhand der in den Motorkennlinien verwendeten Spannungen kann jedoch auf den zulässigen Spannungsbereich geschlossen werden. Höhere Spannungen als in den Kennlinien angegeben sollten vorab mit dem Motorhersteller abgestimmt werden. Wie im vorherigen Abschnitt bereits erwähnt, müssen Motoren, die mit Spannungen betrieben werden, die in den Geltungsbereich der Niederspannungsrichtlinie fallen, eine CE-Kennzeichnung aufweisen. Verschiedene Motorhersteller bieten Motorvarianten oder Serien mit CE-Kennzeichnung an. In der Regel sind diese Motoren auch mit einer zusätzlichen Schraube zur Erdung des Motorgehäuses und/oder einer abgeschirmten Zuleitung ausgestattet. Von Oriental Motor werden die IP54 und IP65-Motoren mit Flanschgrößen Nema23 und Nema34 mit CE-Kennzeichnung geliefert, die Standardmotoren gleicher Größe jedoch ohne CE. Sanyo Denki liefert ebenfalls unterschiedliche Serien mit und ohne CE. Von LAM werden alle Motoren mit CE-Kennzeichnung geliefert, eine Erdungsschraube ist aber nur bei den Motoren ab 86mm Flanschmaß vorhanden. Andere Hersteller liefern entweder keine gemäß CE gekennzeichneten Motoren, oder die Niederspannungsrichtlinie ist nicht Teil der Konformitätserklärung.

Schrittmotor CE

Schrittmotor PK268DW in IP54-Ausführung mit CE-Kennzeichnung und geschirmter Anschlussleitung. Quelle: Oriental Motor

Netzteil

Je nachdem, welche Spannungen bereits in der Anwendung verwendet werden, kann es sinnvoll sein, die Spannungsversorgung für den oder die Schrittmotoren aus den gleichen Netzteilen zu beziehen. Im industriellen Umfeld sind 24V besonders verbreitet, was zu den o.g. Grenzen der IC-Lösungen gut passt. Gängige Spannungen für Schaltnetzteile sind weiterhin 36V und 48V, höhere Spannungen sind sehr selten zu finden. Hier bietet sich bei Bedarf eher eine Reihenschaltung von zwei Netzteilen mit je 36V oder 48V an.

Fazit – die richtige Spannung für Ihre Anwendung

Welche Versorgungsspannung eingesetzt werden kann und darf, ist von vielen Faktoren abhängig. 24VDC sollten in den allermeisten Anwendungen möglich sein, ebenso 36VDC, wenn der verwendete Motortreiber hierfür geeignet ist. 48VDC und ggf. 60VDC sind für den europäischen Markt in der Regel problemlos verwendbar, im amerikanischen und kanadischen Markt jedoch nicht unbedingt zu empfehlen. Hier sollte man 36V nicht überschreiten und auf den Einsatz eines Class 2 Netzteils achten. Bei Spannungen über 60VDC ist eine Risikobeurteilung ratsam. In diesem Rahmen sollte auch geprüft werden, ob für Motor und Motorsteuerung eine CE-Konformitätserklärung vorliegt, welche die Niederspannungsrichtlinie berücksichtigt.

NEMA Schrittmotor – Was ist das eigentlich?

März 20th, 2016

Gelegentlich erreichen mich Anfragen zu Anwendungen mit Schrittmotoren, bei denen die Anwender mit Begriffen um sich werfen, die sie offenbar nicht verstanden haben. Ein Klassiker ist der „Nema Schrittmotor“. Der eine scheint das für einen Herstellernamen zu halten, der nächste für eine Typenbezeichnung. Tatsächlich liegt der Fall etwas anders…

NEMA steht für “National Electrical Manufacturers Association” und ist eine amerikanische Normungsorganisation, ähnlich dem deutschen DIN Institut oder der ISO (International Standard Organisation). Für Schrittmotoren ist die NEMA-Norm ICS 16-2001 „Motion/Position Control Motors, Controls and Feedback Devices“ der relevante Standard. Genauso wie bei anderen Normungsinstituten sind die Normen der NEMA nicht frei zugänglich, sondern müssen käuflich erworben werden. Je nach Umfang der Norm fallen einige Hundert U$ dafür an. Daher möchte ich versuchen, nachfolgend einen Überblick über die verschiedenen Baugrößen bei Schrittmotoren zu geben.

Da die NEMA Normen aus dem amerikanischen Raum stammen, basieren Sie auf Maßangaben in Zoll (inch). Die verschiedenen Motorbaugrößen sind dementsprechend nach ihrem äußeren Kantenmaß (Flanschmaß) in verschiedene Größen unterteilt. Das Flanschmaß in 1/10“ ist dabei jeweils der Name der Baugröße, wobei sowohl die Zollangaben als auch bei der Umrechnung in Millimeter Rundungsfehler auftreten können. Nema 17 bedeutet also 1,7“, entsprechend 43,18mm. Tatsächliches Flanschmaß: 42,0mm. Auch die Wellendurchmesser basieren auf zölligen Maßen, z.B. die 6,35mm bei Nema 23 Motoren (6,35mm=1/4“). Zum Teil sind die Motoren für den europäischen Markt etwas angepasst. So definiert die ICS16-2001 die Gewindebohrungen für Motoren mit C-Flansch (Sacklöcher) mit amerikanischen Normgewinden (z.B. UNC 4-40 für Nema17). Die in der Norm definierten metrischen Flanschmaße finden bei Schrittmotoren offenbar keine Anwendung, weil das auf komplett eigene Baureihen für den metrischen Markt hinauslaufen würde. Anders ist es z.T. bei den Wellendurchmessern, Abschnitt 4.1.2.4 der Norm legt metrische Wellendurchmesser fest. Die 6,35mm Welle bei Nema23 Motoren zeigt aber, dass nicht alle Wellendurchmesser auf das metrische System angepasst wurden.

Maßzeichnung eines Motors mit Nema23-Flansch, Beispiel Nidec Servo KH56QM2-951

Maßzeichnung eines Motors mit Nema23-Flansch, Beispiel Nidec Servo KH56QM2-951

Die Normung der Baugrößen hat für die Anwender entscheidende Vorteile. Es gibt nur eine begrenzte Anzahl an verschiedenen Flanschmaßen und Wellendurchmessern. Motoren von verschiedenen Herstellern lassen sich (mit gewissen Einschränkungen) ohne konstruktive Änderungen gegeneinander austauschen. Das ermöglicht u.a. günstige Einkaufspreise. Im Detail gibt es allerdings schon Unterschiede, die beachtet werden müssen. So können die Länge der Welle und ihre Form (rund, abgeflacht, mit Passfedernut) sowie die Art des Anschlusses (Litzen, Stecker) unterschiedlich ausgeführt sein. Auch die elektrischen Daten sowie die Drehmoment-Kennlinien sind in der Regel nicht direkt vergleichbar.

Die Tabelle fasst die wichtigsten mechanischen Maße sowie typische Werte für am Markt erhältliche Baulängen, Haltemomente und Phasenströme zusammen. Die Daten sind den Katalogen namhafter, vorwiegend japanischer Hersteller entnommen und beziehen sich auf aktuell verfügbare Produkte. Ältere Motoren können z.T. deutlich geringere Haltemomente oder Motorströme aufweisen. Die Tabelle erhebt keinen Anspruch auf Vollständigkeit. Je nach Hersteller und Motorbaureihe kann es auch zu Abweichungen von den in der Norm angegebenen Maßen kommen. Bei Auswahl eines Motors sind die technischen Daten genau zu prüfen, um Probleme bei der Montage zu vermeiden. Das gilt auch, falls in einem bestehenden Produkt auf einen anderen Motortyp umgestellt werden soll.

 

Baugröße Flanschmaß Lochabstand u. Bohrungen typische Baulänge Wellen-durch-messer Drehmoment-Bereich typischer Phasenstrom Bemerkungen
(Nema08) 20mm 16,0mm
4*M2
28-48mm 4,0mm 0,018-0,036Nm 0,5-0,8A Zentrierdurchmesser auch 16,0mm
Lochabstand auch 15,4mm
(Nema11) 28mm 23,0mm
4*M2,5
31-52mm 5,0mm (0,1969″) 0,03-0,14Nm 0,4-1,4A
(Nema14) 35mm 26,0mm
4*M3
20-52mm 5,0mm (0,1969″) 0,05-0,4Nm 0,4-1,2A Lochabstand auch 29,0mm
Nema17 42mm 31,0mm
4*M3
33-59mm 5,0mm (0,1969″) 0,15-1,0Nm 0,25-2,0A
(Nema20) 50mm 41,0mm
4*4,5mm
40-81mm 6,35mm (1/4″) 0,28-1,56 1,0-3,0A
Nema23 56,4mm 47,14mm 4*4,5mm 41-112mm 6,35mm (1/4″) 0,4-3,4Nm 0,7-4,0A Wellendurchmesser z.T. auch 8,0mm
Befestigungslöcher teilw. auch 5,0mm
(Nema24) 60mm 47,14mm 4*4,5mm 44-90mm 8,0mm (~0,3125″) 0,75-3,2Nm 1,0-6,0A Lochabstand auch 50,0mm
Zentrierdurchmesser auch 36,0mm
Nema34 86mm 69,58mm 4*6,5mm 63-150mm 14,0mm 2,5-14Nm 3,0A-10,0A Wellendurchmesser z.T. auch 9,525mm (0,375″) oder 12,0mm
Nema42 106/110mm 88,88mm 4*8,5mm 99-221mm 19,0mm (~0,75″) 12-30Nm 5,5-10,0A Wellendurchmesser auch 16,0mm (~0,625″)

 
Die Tabelle mit weiteren Daten zum Download: Nema_Baugroessen

Die wichtigsten Baugrößen sind Nema 17, Nema 23 und Nema 34. Nema42 ist heute kaum noch gebräuchlich. Höhere Leistungsdichten erlauben oft den Einsatz eines kleineren Motors mit 86mm Flansch (=Nema34). Außerdem wird bei größeren Leistungen inzwischen eher auf Synchron-Servoantriebe gesetzt. Dafür sind in den letzten Jahren zunehmend kleinere Motoren auf den Markt gekommen. Das Angebot reicht heute bis herunter zu 20mm Flanschmaß („Nema08“), allerdings definiert die Norm keine Baugrößen kleiner Nema17. Nema 20 und Nema24 sind Zwischengrößen, die vermutlich von Nema23 abgeleitet wurden, auch diese Größen sind nicht im Standard festgelegt. Nema20 nutzt den gleichen Wellendurchmesser, während bei Nema24 aufgrund der höheren Drehmomente eine Welle mit 8mm Durchmesser zum Einsatz kommt. Auch bei den kleinen Baugrößen Nema14 und Nema11 gibt es Ähnlichkeiten zur größeren Nema17 Bauform. Bei diesen nicht genormten Größen ist besondere Aufmerksamkeit bei der Prüfung der Maßangaben gefordert.

Motoren mit 0,9° Vollschrittwinkel sind in den Baugrößen „Nema14“, Nema17 und Nema23 erhältlich. 3- und 5-phasige Motoren sind in den Baugrößen Nema23 und Nema34 verfügbar.

Schrittmotor-Blog als Top-Ingenier-Blog ausgezeichnet

März 16th, 2016

Mein Blog auf Schrittmotor-blog.de wurde als hilfreicher Ingenieurs-Blog ausgezeichnet. Die Auszeichnung wird im Rahmen der Initiative „Top Ingenieur-Blogs“ von der Firma Walcher GmbH & Co KG vergebenen, die im Bereich Wasserkraft und regenerative Energien tätig ist. Vielen Dank für die Auszeichnung meiner Arbeit!

Innere Werte – Qualität von Schrittmotoren

Februar 4th, 2016

In den letzten 10 Jahren sind die Preise bei Schrittmotoren deutlich unter Druck geraten, vor allem wegen der billigen Produkte aus China. Für den Anwender stellt sich die Frage, wie die Qualität der Motoren zu bewerten ist, da der Preis wie so oft nur bedingt einen Rückschluss auf die Qualität des Produkts zulässt. Im folgenden Beitrag möchte ich daher auf einige Eigenschaften von Schrittmotoren eingehen und aufzeigen, welche Unterschiede es im Detail gibt.

Blechpaket / Stator

Zur Vermeidung von Wirbelstromverlusten wird der Stator des Schrittmotors geblecht ausgeführt. Die Statorbleche sind mit einem Backlack beschichtet, der nach Aufbau des Blechpakets im Ofen verbacken wird, um mechanische Stabilität zu erreichen. Zusätzliche Stabilität erhält der Motor durch die Verschraubung, welche vom vorderen bis zum hinteren Lagerschild reicht. Die Lagerschilde werden aus Gußrohlingen hergestellt, bei denen lediglich die Funktionsflächen (Lagersitze, Montageflansch mit Zentrierbund) spanabhebend nachbearbeitet werden.

Berger Lahr VRDM566

Wo rohe Kräfte sinnlos walten… Bei diesem 5-phasen Schrittmotor von Berger Lahr wurde das Statorgehäuse durch eine übermäßige Drehmoment-Belastung tordiert.

Insbesondere bei preiswerten Motoren werden die Bleche zusätzlich mit mehreren Nähten verschweißt, was an den Schweißnähten naheliegender weise für erhöhte Verluste sorgt. Bei inzwischen erhältlichen Motorlängen bis zu 112mm (bei Motoren mit 56mm Flanschmaß) ist diese Maßnahme kaum zu vermeiden. Bei Motoren mit lediglich 56mm Länge sollte sich die Stabilität des Motors allerdings auch auf anderem Wege erreichen lassen.

Blechpaket Statorgehäuse

Von links nach rechts: Markenloser Chinamotor mit geschweißtem Blechpaket, Nidec Servo KH56QM2 mit gleichmäßiger, ungeschweißter Blechung und Sanyo Denki 103H7823 mit sichtbarem Lagenaufbau.

Wie groß der Einfluss der Statorverluste im Dauerbetrieb sein kann, zeigt die Firma Oriental Motor in einer Wärmebildaufnahme. Vergleichen wurde ein Standardmotor mit der relativ neuen Motorserie PKE, welche mit dünneren Statorblechen aufgebaut wird, um die Verluste weiter zu reduzieren.

Wärmebild Oriental Motor PKE-Serie

Wärmebildaufnahme zum Einfluss der Stator-Blechstärke auf die Erwärmung und damit die Verluste im Motor. Nach 80 Minuten ergibt sich eine Differenz von 40°C am Motorgehäuse [Quelle: Oriental Motor].

Das es auch unter den Motoren „Made in China“ deutliche Qualitätsunterschiede gibt, ist noch auf andere Ursachen zurückzuführen. Einige Importeure betreiben vor Ort eigene Qualitätssicherung und erreichen so geringere Fertigungs- und Montagetoleranzen. Andere Hersteller beziehen nur die Einzelteile aus China, führen die Endmontage aber in Europa durch. Dies gilt z.B. für die Schrittmotoren der italienischen Firma LAM. Abhängig von der Fertigungstiefe müssen diese Motoren aber trotzdem als „Made in China“ gekennzeichnet werden. Die großen japanischen Hersteller sind z.T. noch einen Schritt weiter, und fertigen große Serien schon nicht mehr in China, sondern in anderen asiatischen Ländern, in denen die Lohnkosten deutlich niedriger sind als in China. Durch die hohen Fertigungsstandards und die ISO-zertifizierte Qualitätssicherung ist hat das in der Regel jedoch keinen Einfluss auf die Qualität der Schrittmotoren.

Lager

Die für die Lagerung der Motorwelle verwendeten Kugellager sind die einzigen Verschleißteile bei Schrittmotoren. Insbesondere bei hohen radialen und axialen Kräften auf die Welle (z.B. bei Zahnriemen-Antrieben) haben sie wesentlichen Einfluss auf die Lebensdauer des Motors. Die Lagergröße ist bei Motoren mit Normflansch („Nema“-Baugrößen) durch die Geometrie des Motorflansches vorgegeben. Unterschiede finden sich dagegen bei den verwendeten Lagern selbst (hochwertige Markenprodukte oder preiswerte China-Ware) und bei den Fertigungstoleranzen im Lagerschild und an der Motorwelle. Diese Faktoren können nur durch Öffnen des Motors bzw. mehrerer Motoren geprüft werden, womit der Motor in der Regel unbrauchbar wird. Fertigungs- und Wicklungstoleranzen beeinflussen außerdem die mögliche Streuung in der Serienfertigung sowie Rastmoment und Positionsgenauigkeit im Mikroschritt, und damit das Geräusch und Resonanzverhalten der Schrittmotoren.

PK268 geöffnet

Zerlegter PK268 von Oriental Motor, der nach einem Defekt zur Befundung geöffnet wurde.

Motorwelle

Neben den Fertigungstoleranzen ist für den Anwender vor allem die äußere Ausführung des bzw. der Wellenenden von Interesse. Hierzu zählen Durchmesser, Länge und Querschnitt. War bei 56mm Flanschmaß („Nema23“) lange ein Wellendurchmesser von 6,35mm (1/4“) der Standard, werden viele Motoren mit höherem Drehmoment inzwischen mit 8,0mm Welle geliefert. Noch größer ist die Vielfalt bei Motoren mit 86mm Flansch („Nema34“), hier sind Wellendurchmesser 9,525mm, 12,0mm und 14,0mm gängig. Neben glatter Welle sind ein- oder zweiseitige Wellenabflachung (D-cut) und Wellen mit Passfedernut, sowie Motoren mit ein und zwei Wellenenden erhältlich. Je nach Hersteller gibt es unterschiedliche Standardausführungen, die bei Abnahme größerer Serien auch kundenspezifisch angepasst werden können. Das 2. Wellenende kann z.B. zur Montage von Handrädern, Dämpfern, Encodern oder Motorbremsen verwendet werden. Neben einer entsprechenden Wellenbearbeitung sind für die Montage z.T. auch passende Bohrungen oder Gewinde im hinteren Lagerschild erforderlich.

Unterschiedliche Motorwellen

Von links nach rechts: China-Motor mit runder 6,35mm Welle, PKP268 mit 8,0mm Welle und einseitiger Abflachung, Sanyo Denki 103H7823 mit 8,0mm Welle und 2-facher Abflachung.

Litzen

Bei Motoren mit herausgeführten Leitungen gibt es deutliche Unterschiede bei den verwendeten Litzen. Gute Motoren sind mit sehr flexiblen Litzen ausgestattet, die sich durch einen feindrähtigen Aufbau und dünne, flexible Isoliermaterialien auszeichnen. Bei preiswerten Schrittmotoren sind die Litzen dagegen meist deutlich starrer, der innere Aufbau besteht aus weniger und dafür dickeren Drähten und die Isoliermaterialien sind steifer. Der Litzenaufdruck gibt Aufschluss über Querschnitt, Temperatur- und Spannungsfestigkeit sowie ggf. vorhandene Prüfsiegel (UL, CSA, VDE). Bei Ausführungen in IP54 wird ein mehradriges Kabel statt Einzeladern verwendet, und der Kabelausgang ist zusätzlich abgedichtet.

Anschlusslitzen von Schrittmotoren

Links: China-Motor mit relativ starren Litzen, Kabeldurchführung durch Gumminippel. Rechts: PK266-E2.0B mit feindrähtigen Litzen, Kabeldurchführung mit Kantenschutz aus Kunststoff.

Kabelausgang / Stecker

Alternativ zum Herausführen von Anschlusslitzen gibt es verschiedene Varianten mit steckbaren Anschlüssen. Gängig sind Direkt-Steckverbindungen mit Steckern von JST, Molex oder Amphenol im Kunststoffgehäuse, mit oder ohne zusätzliche Abdeckung am Motorgehäuse. Vereinzelt sind auch Schrittmotoren mit integrierten Industriesteckern (M12) im Angebot, z.B. von Festo. Eine Zwischenlösung sind Motoren mit Klemmkasten am hinteren Lagerschild. Meist wird diese Variante gewählt, wenn die Schutzart IP65 erreicht werden muss. Der Anwender führt das Kabel über eine Kabelverschraubung („PG-Verschraubung“, heute meist mit metrischem Gewinde) in den Klemmkasten ein, wo die einzelnen Adern auf Schraubklemmen aufgelegt werden. Durch den Klemmkasten baut der Motor deutlich länger, die Abdichtung treibt außerdem die Kosten in die Höhe.

Stecker-Varianten bei Nema23 Motoren

Verschiedene Ausführungen von Steckern bei Schrittmotoren. Von links nach rechts: Nidec Servo KH56QM2, Oriental Motor PKP268, Sanyo Denki 103H7823.

Kennlinie

Für die Auslegung des Antriebs spielen Drehzahl-Drehmoment Kennlinien eine wichtige Rolle. Sie geben Aufschluss darüber, welches Drehmoment der Motor bei verschiedenen Drehzahlen erreicht. Da die Kennlinien je nach Versorgungsspannung unterschiedlich ausfallen, ist es hilfreich, wenn Kennlinien für mehrere Spannungen zur Verfügung stehen. Zu sehr preiswerten Motoren aus unbekannter Fertigung bekommt man oft gar keine Kennlinien. Dann bleibt nur die Erprobung in der Applikation, wobei es sinnvoll ist, mit erhöhten Lasten zu arbeiten, um ausreichend Reserven zu berücksichtigen. Alle großen Hersteller stellen dagegen Kennlinien zu ihren Motoren zur Verfügung. Unter Umständen ist es sogar möglich, für spezielle Anwendungen (ungewöhnliche Versorgungsspannung, Betrieb mit geringerem Strom usw.), eine Kennlinie speziell nach Anforderungen des Anwenders aufzunehmen.

Verfügbarkeit

Die langfristige Verfügbarkeit von Ersatzteilen ist in kommerziellen Anwendungen ein gewichtiges Argument. Hier gibt es selbst bei den großen Herstellern unterschiedliche Philosophien und Produktlaufzeiten. Für einige Hersteller ist der europäische Markt relativ unbedeutend, entsprechend stiefmütterlich werden die Kunden behandelt, wenn es um Ersatzteile geht. In anderen Fällen bekommt man auch über 10 Jahre nach Auslaufen einer Serie problemlos einzelne Motoren als Ersatzteil. So lieferte z.B. Oriental Motor bis Frühjahr 2015 noch Motoren aus der 2-Phasen PH-Serie, welche Bereits in den 1990’er Jahren durch die bis heute verfügbare PK-Serie abgelöst wurde.

Fazit – Erforderliche Qualität hängt von der Anwendung ab

Wie man sieht, steckt der Teufel im Detail. Ob die vorgestellten Unterschiede relevant sind, hängt stark von der Applikation und den Ansprüchen an den Antrieb ab. Für private Anwendungen sind die meisten genannten Kriterien von untergeordneter Bedeutung, hier zählt für viele Anwender vor allem der Preis. In kommerziellen Applikationen sieht das ganz anders aus: Ist der Hersteller bzw. Lieferant flexibel genug, Wellenbearbeitung oder Anschlussleitung an die Kundenwünsche anzupassen, kann das in der Montage eine Menge Aufwand und damit Geld sparen. Falls dagegen der verwendete Schrittmotor nach 3 Jahren nicht mehr lieferbar ist, muss ein Ersatztyp qualifiziert werden. Soll z.B. das Endprodukt auf einmal in die USA exportiert werden, kommen Themen wie Prüfsiegel (UL) und Entflammbarkeitsklasse von Litzen und Steckern auf die Tagesordnung. Vor einer Entscheidung für einen Motor lohnt es sich also, verschiedene Typen zu vergleichen und dabei die genannten Kriterien im Blick zu behalten.

Positioniergenauigkeit von Schrittmotoren

November 15th, 2014

Im Beitrag „Die Bedeutung des Lastwinkels bei Schrittmotoren“ wurde bereits diskutiert, warum durch den Einsatz einer Mikroschritt-Ansteuerung zwar die Auflösung des Antriebssystems erhöht wird, nicht aber die Genauigkeit. Dabei wurde auch erläutert, warum ein Schrittmotor unter Last einen Positionsfehler von bis zu einem Vollschritt aufweisen kann, ohne dass er aus dem Tritt gerät. Im Rahmen einer Diskussion über Schrittmotoren und Rampen im Forum von Mikrocontroller.net wurde im Verlauf der Diskussion auch die Frage erörtert, ob der max. Positionsfehler eines Schrittmotors nun ein, zwei oder gar vier Vollschritte betragen würde. Diese Frage möchte ich daher hier nochmals aufgreifen.

In der Literatur finden sich zum statischen Belastungsfall (d.h. der Motor steht und wird durch ein externes Moment belastet) vergleichbare Abbildungen wie im Beitrag über den Lastwinkel, wobei hier das Motormoment aufgetragen ist, während in der Literatur meist das extern angreifende Moment dargestellt wird, und nicht das vom Motor aufgebrachte Moment. Dieses ist dem Lastmoment entgegen gesetzt und weist dementsprechend ein anderes Vorzeichen auf.

Eine besonders interessante Darstellung findet sich bei RUMMENICH. Neben der bekannten sinusförmigen Lastmoment-Kurve, die den Bereich +/-2 Vollschritte abdeckt, wird hier die Stabilität der Rotorlage durch einen Vergleich mit einem Pendel symbolisch dargestellt. Anhand des Pendels wird deutlich, dass der Rotor in den Positionen bei +/- 2 Vollschritten eine instabile Lage einnimmt. Sollte es zu einer Überlastung des Motors kommen, wird der Rotor also in die nächste stabile Position (+/- 4 Vollschritte) springen. Das gilt allerdings nur, wenn die externe Last dann wieder kleiner ist als das Drehmoment des Motors. Ansonsten wird der Rotor um weitere n*4 Schritte weiter drehen. Analog kann das Pendel nur in seine stabile Lage zurück schwingen, wenn die Kraft welche die Auslenkung verursacht hat, verschwindet (d.h. wenn das Pendel losgelassen wird).

Lastwinkel Rummenich

Darstellung des Lastwinkels im Buch von E. Rummenich.

Eine ausführlichere Betrachtung zum Thema Winkelfehler durch Belastung des Motors findet sich bei SCHÖRLIN. Neben dem Einfluss einer statischen Last wird hier auch auf das Reibmoment eingegangen. Der durch das Reibmoment verursachte Winkelfehler wird gemäß

α=arcsin⁡(Mr/Mmax)

berechnet, wobei Mr das Reibmoment und Mmax das Nennmoment des Schrittmotors ist. Es wird sofort klar, dass ein höheres Drehmoment bei gleichbleibendem Reibmoment einen kleineren Winkelfehler zur Folge hat. Umgekehrt führt eine Absenkung des Motorstroms zu einem höheren Winkelfehler.

SCHÖRLIN betrachtet aber auch den dynamischen Lastfall. Bei höheren Drehzahlen ergibt sich durch die Phasenverschiebung zwischen Strom und Spannung ein Nacheilen des Drehfeldes gegenüber den angelegten Spannungen um max. 90°, so dass auch der Rotor zurück fällt. Dieser Effekt überlagert sich mit dem statischen Lastfall, so dass der dynamische Gesamtfehler bis zu zwei Vollschritte betragen kann.

Dynamischer Lastwinkel

Darstellung des statischen Lastwinkels incl. Einfluß des Reibmomentes (oben) sowie des dynamischen Lastwinkels (unten) bei F. Schörlin

Kommt es zu einer Überlastung und damit zu einem außer Tritt fallen des Motors („Schrittverlust“), springt der Schrittmotor um ein Vielfaches von 4 Vollschritten weiter. Der im Verlauf der eingangs genannten Diskussion gebrauchte Begriff „Großschritt“ findet sich in der Literatur übrigens nicht wieder. Auch eine Websuche führt zu nicht zu relevanten Treffern. Stattdessen ist es üblich, von einer elektrischen Umdrehung zu sprechen, da sich nach vier Vollschritten das Bestromungsmuster widerholt. Der Zusammenhang zwischen der elektrischen Umdrehung und einer mechanischen Umdrehung des Rotors (=360°) ist die Anzahl der Polpaare. Der typische 2-phasige Schrittmotor mit 1,8° Vollschritt-Winkel (200 Vollschritte/U) weist demnach eine Polpaarzahl von 50 auf.

Zusamenfassung: Unterhalb des Motor-Nennmoments ist der auftretende Winkelfehler im statischen Fall kleiner als +/- einen Vollschritt. Im dynamischen Fall kann der Winkelfehler sogar auf +/- zwei Vollschritte ansteigen. Dieser Effekt ist bei Anwendungen mit hohen Anforderungen an die Positioniergenauigkeit unbedingt zu beachten. Ggf. hilft es, den Motor entsprechend größer auszulegen, so dass die auf den Rotor wirkenden Lastmomente gegenüber dem Nennmoment klein bleiben, was entsprechend kleinere Winkelfehler zur Folge hat.

Ansteuern von Schrittmotoren mit Arduino

Mai 5th, 2014

Ein Arduino Controller kann verwendet werden, um eigenständige interaktive Objekte zu steuern oder um mit Softwareanwendungen auf Computern zu interagieren (z. B. Adobe Flash, Processing, diverse Skriptsprachen, Terminal etc.). Arduino wird beispielsweise auch an Kunsthochschulen genutzt, um interaktive Installationen aufzubauen. Die Hardware besteht aus einem einfachen I/O-Board mit einem Mikrocontroller und analogen und digitalen Ein- und Ausgängen. Die Entwicklungsumgebung verwendet die Programmiersprache Processing, die auch technisch weniger Versierten den Zugang zur Programmierung und zu Mikrocontrollern erleichtern soll. [Quelle: Wikipedia]

Um es Einsteigern in die Welt von Elektronik und Mikrocontrollern möglichst einfach zu machen, gibt es für die Arduino-Plattform eine große Vielfalt an steckbaren Erweiterungsmodulen, so genannte „Shields“. Auch für die Ansteuerung von Motoren sind diverse Shields erhältlich. Sie bestehen oft nur aus einem Treiberchip mit der minimalen Basisbeschaltung. Über die kleine Platine kann kaum Verlustleistung abgeführt werden, zudem fehlt es für größere Motoren an ausreichend dimensionierten Pufferelkos. Auch Schutzbeschaltungen (Kurzschlussschutz, Optokoppler in Richtung Controller) sind die absolute Ausnahme. Das Experimentieren mit Motoren kann so schnell zu einem frustrierenden Erlebnis werden, wenn mit den Motoren „reale“ Lasten angetrieben werden sollen. Im folgenden Beitrag wird gezeigt, wie man mit einem Arduino mit Hilfe der AccelStepper-Bibliothek über wenige I/Os nahezu alle Schrittmotorsteuerungen mit Takt-/Richtungsinterface ansteuern kann.

Zur Arduino Entwicklungsumgebung gehört auch eine einfache Bibliothek zur Ansteuerung von Schrittmotoren. Sie geht jedoch davon aus, dass die Motorwicklungen direkt oder mittels zwischengeschalteter Transistoren über die I/Os des Prozessors angesteuert werden (Verwendung von zwei Ausgängen je Motorwicklung, insgesamt 4 Ausgänge). Beschleunigungs- und Bremsrampen sind nicht vorgesehen. Durch diese einfache Ansteuerung lässt sich nur ein geringes Drehmoment bei niedrigen Drehzahlen erreichen. Die AccelStepper-Library unterstützt dagegen auch so genannte 2- und 3-Draht Interfaces sowie den Typ „Driver“. Gemeint ist damit die Ansteuerung von integrierten Treibern über Takt- und Richtungssignale. Es ist auch möglich, eigene Interface-Definitionen einzuführen, wie im Beispiel zu diesem Beitrag gezeigt wird. Wie der Name andeutet, implementiert die Lib außerdem Beschleunigungs- und Bremsrampen. Über die Bibliothek können zudem mehrere Motoren gleichzeitig angesteuert werden, was die Anwendungsmöglichkeiten von Arduino für Projekte mit Motoren deutlich erweitert.

Anschluss der Tiny-Step Endstufe an den Arduino Controller

Anschluss der Tiny-Step Endstufe an den Arduino Controller

Das Bild zeigt den Anschluss der Takt-Richtungsendstufe Tiny-Step II, welche auf dem A3979 von Allgero Micro basiert. Der Treiber realisiert Motorströme bis 2,25A bei bis zu 35V bei Mikroschritt-Auflösungen bis 1/16. Durch das durchdachte Kühlkonzept werden die genannten Leistungsdaten auch im Dauerbetrieb sicher erreicht. Der integrierte, selbstrückstellende Kurzschlussschutz sichert die Schaltung vor Schäden durch falsche Beschaltung. Neben den Anschlüssen für Takt und Richtung (grün und gelb) werden auch Ausgänge für Enable (Einschalten der Endstufe) und Stromabsenkung ausgegeben sowie ein Fehlersignal von der Endstufe über einen Eingang eingelesen. Diese Signale sind optional. Der fertige Aufbau ist im folgenden Bild zu sehen, angeschlossen ist ein Nema17 Motor mit 0,5Nm Haltemoment. Auch kleinere Nema23 Motoren können mit diesem Aufbau angesteuert werden.

Testaufbau mit Arduino, Tiny-Step und Schrittmotor von Nidec Servo

Testaufbau mit Arduino, Tiny-Step und Schrittmotor von Nidec Servo

Nach dem gleichen Prinzip und hier sogar mit der identischen I/O-Beschaltung lassen sich aber auch deutlich leistungsfähigere Endstufen an den Arduino anbinden. Das folgende Bild zeigt einen Aufbau mit einer Endstufe vom Typ LAM DS1078 (bis 14A bei bis zu 90V), die einen Nema34 Motor mit 3,1Nm antreibt. Die DS10-Serie ist eine industrietaugliche Serie von Schrittmotorendstufen mit SPS-kompatiblen I/Os. Durch den Einsatz dieser Kraftpakete ergeben sich mit dem Arduino ganz neue Möglichkeiten.

Testaufbau mit LAM DS1078

Testaufbau mit LAM DS1078

Das Programmierbeispiel (Arduino-Projekte werden auch Sketch genannt) ist auf Git-Hub frei zum Download verfügbar. Ich würde mich über Rückmeldungen zum Einsatz der Accellib freuen.

Vorteile eines Lagereglers im Antrieb statt in der NC/PLC

April 25th, 2014

Der folgende Beitrag befasst sich mit der Regelungsoptimierung von Synchron-Servomotoren und ist damit ein Kontrastpunkt zu meinem Schwerpunktthema Schrittmotoren.

Ausgangslage:
Betrachtet wird eine vertikale Achse eines Handlings-Systems, welche reine Punkt-zu-Punkt Bewegungen ausführt, also während der Verfahr Bewegung keine Bahn einhalten muss. Der Antrieb besteht aus einem Beckhoff AM8023-E021 Servomotor mit Bremse und Sigleturn-Geber mit OCT (One Cable Technology, dabei wird der Geberistwert mittels Hyperface über die Leitungen des Temperaturgebers im Motorkabel übertragen). Die Bewegung wird über ein Getriebe auf eine Kugelrollspindel übertragen. Angesteuert wird der Motor über eine AX5203.

Servoregler-Familie AX5000

Servoregler-Familie AX5000 (Quelle: Beckhoff Automation)

Die Regler der AX5000 Familie von Beckhoff werden über TwinCAT an die übergeordnete Steuerung (SPS bzw. PLC) angebunden. Dort werden sie von der Beckhoff NC angesprochen, welche über die Datenstrukturen NC2PLC und PLC2NC wiederum eine Schnittstelle zum eigentlichen SPS-Programm bietet. Die Servoregler arbeiten mit dem Sercos over EtherCAT (SoE) Protokoll, d.h. das Übertragungsmedium ist EtherCAT, die eigentlichen Antriebsfunktionen (Parameternummerierung, Zustandsmaschine) entsprechen aber denen bei Sercos-Antrieben.

Standardmäßig werden die Servoregler dabei so parametriert, dass Drehzahl- und Stromregler im Antrieb geschlossen werden, während der Lageregler in der NC geschlossen wird. Obwohl TwinCAT kurze Buszykluszeiten ermöglicht, stellt die Übertragung von Soll- und Istwerten über den Bus eine zusätzliche Verzögerung für den Regler dar, die einen deutlichen Einfluss auf dessen dynamisches Verhalten haben kann, wie das folgende Beispiel zeigt.

In der Standardeinstellung (Lageregler in der NC geschlossen) war ein Kv-Faktor von 5 s-1 eingestellt. Der max. Schleppfehler während der Verfahr Bewegung beträgt dabei ca. 75µm. Nach dem Ende der Bewegung (SETVELO=0) dauert es 344ms, bis der Schleppfehler unter 10µs fällt.

Lageregelung in der NC. Oben: Position, Mitte: Drehzahl, Unten: Schleppfehler. Per Cursor markiert: Zeit vom Ende der Bewegung bis zum Erreichen einer Lageabweichung <10µm.

Lageregelung in der NC. Oben: Position, Mitte: Drehzahl, Unten: Schleppfehler. Per Cursor markiert: Zeit vom Ende der Bewegung bis zum Erreichen einer Lageabweichung <10µm.[/caption] Nach dem der Lageregler im Antrieb geschlossen wurde, konnte der Kv-Faktor ohne weiteres auf 7,5 s-1 erhört werden. Der Schleppfehler reduzierte sich für das gleiche Verfahr Profil wie zuvor auf 0,5µm. Selbst bei Fahrt mit annähernd maximaler Geschwindigkeit (50mm/s am Abtrieb) bleibt der Schleppfehler bei max. 2µm. [caption id="attachment_222" align="alignnone" width="300"]Lageregler im Antrieb geschlossen. Oben: Position, Mitte: Drehzahl, Unten: Schleppfehler. Lageregler im Antrieb geschlossen. Oben: Position, Mitte: Drehzahl, Unten: Schleppfehler. Abweichende Skalierung vom Schleppfehler beachten!

Um den Lageregler in der AX5000 verwenden zu können, sind folgende Einstellungen erforderlich:
IDN-Parameter S-0-0-0032 in der Startup-Liste von 2 (velo control) auf 11 oder 12 (pos ctrl Feedback 1/2 lag less) umstellen. Die Einstellung „lag less“ sorgt durch eine Drehzahlvorsteuerung für minimalen Schleppfehler während der Bewegung.

Anpassen der Standardbetriebsart in der Startup-Liste

Anpassen der Standardbetriebsart in der Startup-Liste

In den Kanaleinstellungen unter Process Data / Operation Mode das Prozessabbild wie folgt anpassen. MDT: S-0-0036 „Velocity command value“ entfernen, statt dessen S-0-0047 „Position command value“ neu einfügen. AT: S-0-0189 „Following distance“ einfügen. Der Schleppfehler wird zusätzlich in die NC verknüpft, um den Schleppfehler dort ohne Totzeit anzeigen zu können. Ansonsten würde die Berechnung aus Sollposition(n) – Istposition(n-1) berechnet (n, n-1: diskrete Zeitpunkte).
Ggf. bereits vorhandene Verlinkungen in die NC löschen und Achsen neu verlinken.

Anpassen des Prozessabbildes im Beckhoff Drivemanager

Anpassen des Prozessabbildes im Beckhoff Drivemanager

Zusammenfassung:
Die Verlagerung des Lagereglers von der NC in den Antrieb ermöglicht den Betrieb mit deutlich reduzierten Regelabweichungen und schnelleren Ansprechzeiten des Antriebs. Ermöglicht wird dies durch den Entfall der Buslatenzen sowie durch den höheren Lagereglertakt im Antrieb (typisch 8kHz statt 1kHz in der NC). Ein weiterer Vorteil ist die Entlastung der CPU in der SPS durch den Entfall der Regelung dort.

Einschwingverhalten von Schrittmotoren

Juli 9th, 2013

Um Schrittmotoren in der Anwendung besser verstehen und beurteilen zu können ist es hilfreich, zunächst das Verhalten des Motors bei einem einzelnen Schritt zu betrachten. Auf dieser Basis lassen sich viele Dinge wie z.B. die Vorteile von Halb- und Mikroschritt sowie die Bedeutung der Last und ihrer Ankopplung an den Motor besser nachvollziehen.

Für die in diesem Beitrag behandelten Messungen wurde zur Erfassung der Rotorbewegung ein Encoder mit 5.000 Strichen und TTL-Ausgang verwendet. Mit Hilfe der 4-fach Flankenauswertung lässt sich die Bewegung auf 20.000 Pulse/U auflösen. Bei einem normalen Schrittmotor mit 200 Vollschritten/U entspricht das 100 Pulsen pro Vollschritt.

Der Encoder wurde über eine drehsteife Elastomer-Kupplung direkt an den Motor angekoppelt. Als Testmotor wurde ein Oriental Motor Typ PK268-E2.0B in paralleler Beschaltung eingesetzt. Auf der B-Welle war ein Dämpfer Typ D6CL-6.3F (Massenträgheit J_Dämpfer=18,5*10-6 kg*m², J_Motor=48*10-6 kg*m²) montiert.

Testaufbau, Schrittmotor mit Encoder

Schrittmotor PK268-E2.0B mit Encoder und Dämpfer

Angesteuert wurde der Motor über eine 3-Achs Endstufe „3D-Step“ mit der klassischen L297/L298 Treiber-Kombination bei 2,0A(effektiv), also etwas unterhalb des Nennstroms von 2,8A. Die Erfassung der Encoder-Signale erfolgte über eine Beckhoff-SPS mit einer Taktrate von 2ms.

Bei einem Vollschritt sollte der Motor einen Winkel von 1,8° weiterschalten. Eine erste Messung zeigt, dass der Motor trotz der Belastung durch den Dämpfer und den Encoder dabei deutliche Schwingungen ausfürt. Der Rotor schwingt bis fast 2,8° über und pendelt auf 1,5° zurück, bevor die Schwingung langsam abklingt und nach ca. 10ms in einem Toleranzband von +/- 0,2° ausklingt.

Messergebnis Vollschritt mit Dämpfer

Vollschritt mit Dämpfer

Noch deutlich schlimmer sieht es aus, wenn man den Dämpfer von der B-Welle des Motors entfernt. Das Überschwingen ist mit max. 3,0° von der Amplitude her zwar nur unwesentlich stärker, jedoch lässt sich deutlich erkennen, dass die Dämpfung stark reduziert wird. Es dauert jetzt ca. 25ms, bis der Rotor im selben Toleranzband bleibt wie dies beim ersten Versuch bereits nach 10ms der Fall war.

Messergebnis für Vollschritt ohne Dämpfer

Vollschritt ohne Dämpfer

Nach Umschalten der Endstufe in den (stromkompensierten) Halbschritt und erneuter Montage des Dämpfers ergibt der nächste Versuch die folgende Sprungantwort. Zu beachten ist hier, dass der Motor nach einem Halbschritt im Vergleich zu den vorherigen Versuchen nur den halben Winkel, also 0,9° zurück gelegt hat. Die Schwingung reicht hier von ca. 1,15 bis zurück nach 0,7° und erreicht bereits nach einer Schwingung ein Toleranzband von +/-0,1°. Zur besseren Vergleichbarkeit wurde der Maßstab des Graphen unverändert beibehalten.

Messergebnis für Halbschritt mit Dämpfer

Halbschritt mit Dämpfer

Beim Übergang zu einer kontinuierlichen Drehbewegung wird der Rotor je nach Drehzahl weitergeschaltet, bevor die durch einen einzelnen Schritt angeregte Schwingung vollständig abgeklungen ist. Das zeigt auch die folgende Messung bei ca. 42Hz Halbschritt. Trotzdem führen insbesondere der erste Überschwinger und die stufenweise Bewegung im unteren Drehzahlbereich zu unangenehmen Betriebsgeräuschen.

Messergebnis für eine kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

Kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

In der Anwendung treibt der Motor eine mehr oder weniger steif angekoppelte Last an. Es ist angesichts dieser Messungen leicht nachvollziehbar, dass der Motor mit seiner Schwingneigung leicht Resonanzstellen in der Mechanik anregen kann.

Die Amplitude des Überschwingens hängt direkt mit dem Drehmoment und damit mit dem Motorstrom zusammen. In diesem Versuch wurde der Motor bereits ca. 30% unterhalb seines Nennstroms betrieben. Bei Nennstrom ist also eine noch stärkere Schwingung zu erwarten. Umgekehrt bedeutet dies, dass eine Absenkung des Motorstroms –sofern in der Anwendung entsprechende Drehmomentreseven vorhanden sind- zu einer Reduktion von Schwingungen führen wird.

Wie der Gegenversuch mit dem Dämpfer zeigt, hilft eine steif angekoppelte Last, das Gesamtsystem zu bedämpfen. Auch die Auswahl einer geeigneten Kupplung sowie eine stabile Lastmechanik (geringe Schwingungsneigung) sind Hilfen, um Resonanzprobleme zu vermeiden. Einen deutlichen Vorteil bietet vor allem der Wechsel zum Halbschritt-Modus. Bei Einsatz einer Endstufe mit Drehmoment-Kompensation (also der Erhöhung des Phasenstroms in den Halbschrittpositionen) entsteht durch den Einsatz von Halbschritt kein nennenswerter Drehmomentverlust. Daher und wegen der erhöhten Schwingungsneigung im Vollschritt rate ich grundsätzlich von der Verwendung des Vollschrittbetriebs ab.

Eine weitere Optimierung besteht im Einsatz von Steuerungen mit Mikroschritt und ggf. der Möglichkeit, das beim Schrittmotor besonders ausgeprägte Rastmoment zu kompensieren. Diesem Thema werde ich demnächst einen eigenen Beitrag widmen.

Resonanzen mal anders – Musizieren mit Schrittmotoren

Juni 21st, 2013

Normalerweise sind Resonanzen bei Schrittmotoren unerwünscht. Man kann sich Resonanzeffekte aber auch zu Nutze machen.

Durch das schrittweise weiterschalten des Rotors im Schrittmotor wird die umgebende Mechanik (einschließlich des Stators) zum Schwingen angeregt. Dieser Effekt tritt im Vollschritt Betrieb besonders deutlich auf. Die dabei erzeugten Frequenzen sind abhängig von der Drehzahl des Motors. Die Grundschwingung entspricht der Taktrate, also der Anzahl der Vollschritte pro Umdrehung. Variiert man die Ansteuerung des Motors geschickt, lassen sich mit dem Motor Melodien abspielen. In gewissen Grenzen kann man sogar die Amplitude dynamisch anpassen, wenn man den Phasenstrom variiert.

Einige ausgewählte Beispiele die ich besonders interessant finde habe ich in der nachfolgenden Linksammlung zusammen gestellt:

James Bond theme – 8-stimming mit Diskettenlaufwerken

Smoke on the waters – 8-stimming mit Diskettenlaufwerken

Starwars imperial march

Nochmal imperial march – 8-stimmig und mit Backlight

Depeche Mode – Enjoy the silence

Tetris auf einer CNC-Maschine

Spiegel Online über Musik mit CNC-Fräsen:
http://www.spiegel.de/netzwelt/web/maschinenmusik-so-krass-roehrt-die-cnc-fraese-a-620661.html

LPT, USB und Ethernet – Welche Schnittstelle für Desktop-CNC Maschinen?

Mai 18th, 2013

In der Zeitschrift „Hardware Hacks“ Ausgabe 1/2013 wurde im Rahmen eines Tests (S. 30ff) von Desktop-CNC Maschinen kritisiert, dass bei vielen der getesteten Maschinen noch der LPT-Port (Parallelport) als Schnittstelle zum PC verwendet wird. Warum das meiner Meinung nach trotzdem sinnvoll ist, will ich nachfolgend erläutern:
Es stimmt zwar, dass der Druckerport (LPT) im PC längst obsolet ist. Trotzdem hat er als Schnittstelle für Schrittmotorsteuerungen in low-cost CNC-Anwendungen nach wie vor seine Berechtigung. Dies ist vor allem darauf zurückzuführen, dass im Endgerät kein Protokoll implementiert werden muss, sondern die I/O-Signale direkt verwendet werden können – nach dem sie idealerweise auf einer Interfacekarte (oft auch als Breakout Board bezeichnet) noch etwas aufbereitet wurden. Musste man früher die Pinbelegung ggf. noch durch ein handgelötetes Adapterkabel anpassen, können heute eigentlich alle gängigen Programme auf unterschiedliche Pinbelegungen hin angepasst werden.
Steht kein LPT-Port mehr zur Verfügung oder soll aus Performance-Gründen USB oder LAN eingesetzt werden, ist dies trotzdem ohne Weiteres möglich. Aufgrund der bereits genannten Protokoll-Problematik ist hierfür jedoch ein Controller erforderlich, der zu dem eingesetzten CNC-Programm passt. WinPCNC wird z.B. in der USB-Version gleich mit einem passenden Controller geliefert, der 2 „LPT“-Ports als Schnittstelle zur Elektronik bietet. Mit dem „Smooth-Stepper“ gibt es für Mach3 ähnliche Lösungen sowohl für USB als auch Ethernet. Ausgangsseitig werden auch hier diskrete I/Os in Anlehnung an den LPT-Port verwendet.
Wenn ein Maschinenhersteller also für seine Steuerung auf den LPT-Port setzt, ist das letztlich im Sinne des Anwenders, weil diese nicht an die vom Maschinenbauer präferierte Software gebunden ist. Statt dessen bleibt dem Anwender die freie Wahl, welche Software er einsetzen möchte.