Archive for Mai, 2011

Seriell oder parallel? Alles eine Frage der Drehzahl, oder?

Dienstag, Mai 24th, 2011

Über die Unterschiede von unipolaren und bipolaren Schrittmotoren wurden bereits einige Worte verloren. Aber wie sieht es bei Motoren mit 8 Anschlüssen aus, sollte man hier die Wicklungen seriell oder parallel verschalten? Das ist in erster Linie eine Frage der geforderten Drehzahl, aber auch des Geldbeutels. Der folgende Beitrag widmet sich den Vor- und Nachteilen beider Beschaltungsarten.

Warum sich bei einem unipolaren Motor die Wicklungsinduktivität vervierfacht, wenn man die Wicklungen bipolar betreibt (also in Reihe schaltet), wurde ja bereits hergeleitet. Dieser Zusammenhang gilt natürlich auch für einen Schrittmotor mit 8 Anschlüssen. Aus dem gleichen Grund ändert sich die Induktivität gegenüber dem uniolaren Fall nicht, wenn man die Wicklungshälften parallel schaltet. Für den Wicklungswiderstand gelten dagegen die bekannten Zusammenhänge für Reihen- und Parallelschaltung, also doppelter Widerstand im seriellen Betrieb und halber Widerstand bei parallelem Betrieb. Oder anders ausgedrückt: Beim Wechsel von parallel auf seriell vervierfacht sich der Widerstand. Und das hat Auswirkungen auf die elektrische Zeitkonstante der Wicklung (tau=L/R). Sie bleibt nämlich in beiden Fällen gleich.

Trotzdem gibt es erhebliche Unterschiede in der Perfomance des Motors. Dieser Effekt ist durch die Spannung zu erklären. Legt man die gleiche Spannung an einen Schrittmotor mit parallel geschalteten Wicklungen an und an einen mit seriell geschalteten Wicklungen, liegt an den Teilwicklungen des ersten Motors die volle Spannung an, wärend die seriell geschalteten Wicklungen eine Art Spannungsteiler bilden, so dass jede Teilwicklung nur die halbe Betriebsspannung „sieht“. Und da eine höhere Betriebsspannung zu einem schnelleren Stromanstieg führt, erreicht ein Motor mit parallel geschalteten Wicklungen deutlich höhere Drehzahlen (bzw. bei gleicher Drehzahl mehr Drehmoment, zumindest im oberen Bereich der Kennlinie).

Die folgenden Kennlinen verdeutlichen den Unterschied. Während der seriell beschaltete Schrittmotor bei 24V= und 200 U/min nur noch 0,7N, erreicht, schafft der parallel verschaltete Motor mit 1,7Nm noch mehr als das Doppelte. Die Kennlinien gelten übrigens auch für den PK268-E2.0, bei PK268PDA und PK268PA ist lediglich die serielle bzw. parallele Verdrahtung schon werksseitig vorgenommen worden. Einen ähnlichen Effekt wie der Wechsel von serieller zu paralleler Beschaltung hat übrigens eine Anhebung der Betriebsspannung, wie der 2. Satz Kennlinien deutlich macht. Wegen der unterschiedlichen Spannungen (36V vs. 48V) sind jetzt beide Beschaltungsarten allerdings nicht mehr direkt vergleichbar.

Kennlinen PK268

Drehzahl Drehmoment-Kennlinien beim PK268 (oben parallel, unten seriell).

(Quelle: Katalog 2-Phasen Schrittmotoren, Fa. Oriental Motor)

Da beide Teilwicklungen mit dem Nennstrom betrieben werden sollen, erreicht man die höhere Leistung im Parallelbetrieb (wir erinnern uns: P=ω*M, also Leistung ist Drehmoment mal Drehzahl) letztlich durch einen höheren Strom. Und damit benöigt man unter Umständen eine leistungsstärkere Schrittmotorsteuerung (bzw. -endstufe), die dann entsprechend teurer ausfällt. Ob sich der Leistungssprung lohnt, ist also auch eine finanzielle Frage. Ob eine höhere Betriebsspannung für genügend Drehmoment-Reserve sorgt, muss im Einzelfall geprüft werden, z.B. durch Simulationen oder Messungen. Bei Serienanwendungen ist es nicht unüblich, vom Motorhersteller Kennlinien für die konkreten Betriebsbedingungen messen zu lassen. Unter Umständen erreicht man aber auch erst mit einer kundenspezifisch angepassten Wicklung ein optimales Ergebnis. Es kann sich also lohnen, einen externen Berater hinzuzuziehen…

Stromregelung von Schrittmotoren – Auf das Abschalten kommt es an

Sonntag, Mai 15th, 2011

Bei der Ansteuerung von Schrittmotoren haben sich schon längst Treiber mit Konstantstromregelung durchgesetzt. Ansteuerungen mit Konstantspannung findet man nur noch vereinzelt, z.B. bei Zeigerinstrumenten im Automobil, siehe vorletzter Beitrag. Entscheidend für die Performance einer Schrittmotor-Endstufe mit Konstantspannungsregelung ist, neben der Höhe der Versorgungsspannung und dem Wicklungsstrom vor allem die Phase, in der der Strom in der Wicklung wieder abgebaut wird. Die unterschiedlichen Verfahren erläutert der folgende Beitrag.

Induktivitäten versuchen, aufgrund der in ihnen gespeicherten Energie, nach dem Abschalten der Spannung den durch sie fließenden Strom aufrecht zu erhalten. Je nach dem, wie die Wicklung abgeschaltet wird, wird der Strom schneller oder langsamer abgebaut. Davon hängt letztlich auch ab, wie schnell der Strom in die Gegenrichtung aufgebaut werden kann, wenn der Schrittmotor schnell läuft und die Wicklungen oft umgepolt werden. Beim slow decay erfolgt der Stromabbau langsam, was bei hohen Drehzahlen (d.h. häufigem Umgepolen) dazu führen kann, dass der Strom nicht schnell genug abgebaut werden kann. Insbesondere im Mikroschritt ergibt sich dann eine deutliche Abweichung von der gewünschten, sinusähnlichen Stromkurve, die auch zu hörbaren Geräuschen durch Schwankungen im Drehmoment führen kann.

Stromverlauf bei slow decay Stromregelung

Stromverlauf bei slow decay Stromregelung (Quelle: "A new microstepping motor driver IC", Kongress-Paper über den A3977 zur PCIM 2001, Allegro Micro).

Beim „slow decay„, also dem langsamen Abklingen des Stromes, wird die Wicklung zunächst (während der deadtime) über die Dioden der Vollbrücke kurzgeschlossen, bevor einer oder beide unteren FETs bzw. Transistoren der Brücke eingeschaltet werden (prinzipiell können alternativ auch die oberen FETs eingeschaltet werden).  Man kann die beiden FETs gedanklich auch gegen 2 Widerstände ersetzen, die mit der Motorwicklung in Reihe geschaltet werden. Die Phase zwischen dem Ein-Zustand und dem Kurzschließen der Wicklung (Deadtime bzw. Totzeit) wird durch die Dioden überbrückt. Bei FETs wird diese Aufgabe automatisch von den internen Body-Dioden übernommen, bei Transistorbrücken müssen unbedingt schnelle externe Dioden verwendet werden. Wird anschließend nur ein FET eingeschaltet (Q4 im Bild), läuft der Strom auf der Gegenseite über die Diode. Da der Spannungsabfall über den Dioden meist größer ist als der in den FETs, schalten moderne Treiber meist beide FETs ein. Das Verfahren wird auch „synchronous rectification“ oder „synchronous decay“ genannt. Das folgende Bild zeigt die sich ergebenden Strompfade.

Strompfade bei slow-decay Stromregelung

Strompfade in einer FET-Brücke bei slow-decay Stromregelung

Deutlich schneller geht der Stromabbau beim „fast decay„, also dem schnellen Abklingen des Stromes. Nach der deadtime wird die Wicklung durch Umpolen kurzgeschlossen, bis der Strom auf Null abgeklungen ist. Auch hier kann der Kurzschluss entweder über die Dioden oder über gezieltes Schalten der FETs erfolgen. Dabei wird die in der Wicklung gespeicherte Energie in die Versorgung zurück gespeist, was zwar die Verluste mindert, aber auch zu einem höheren Ripple im Strom und in der Versorgungsspannung führt. Außerdem kann der schnelle Stromabbau dazu führen, dass bei niedrigen Drehzahlen der Mittelwert des Wicklungsstromes deutlich kleiner ist als eigentlich vorgesehen.

Strompfade bei fast-decay Stromregelung

Strompfade in einer FET-Brücke bei fast-decay Stromregelung

Im „mixed decay“ werden die Vorteile beider Verfahren vereint. Der Strom wird zunächst bis zu einer (meist in mehreren Stufen einstellbaren) Schwelle per fast decay abgebaut, bevor auf slow decay umgeschaltet wird. Zusätzlich wird in Phasen, in denen der Strom aufgebaut werden soll (also vom Nulldurchgang bis zum max. Phasenstrom) nur mit slow decay gearbeitet, wärend im 2. Teil der Halbwelle mit mixed decay gearbeitet wird. Das folgende Bild veranschaulicht die unterschiedlichen Phasen am Beispiel des A3977 im 1/8 Schritt Mikroschritt.

Phasenstrom mixed decay

Phasenstrom bei mixed decay Stromregelung, Unterteilung in Phasen des Stromauf- und -abbaus (Quelle: Datenblatt A3977, Allegro Micro).

Der unterschiedliche Verlauf des Motorstroms sieht dann in den mixed decay Phasen wie folgt dargestellt aus:

Stromverlauf mixed decay

Stromverlauf mixed decay (Quelle: "A new microstepping motor driver IC", Kongress-Paper über den A3977 zur PCIM 2001, Allegro Micro).

Weitere Literatur zum Thema: „Current Recirculation and Decay Modes“, Application Report SLVA321–March 2009, Texas Instruments