Posts Tagged ‘parallel’

Einschwingverhalten von Schrittmotoren

Dienstag, Juli 9th, 2013

Um Schrittmotoren in der Anwendung besser verstehen und beurteilen zu können ist es hilfreich, zunächst das Verhalten des Motors bei einem einzelnen Schritt zu betrachten. Auf dieser Basis lassen sich viele Dinge wie z.B. die Vorteile von Halb- und Mikroschritt sowie die Bedeutung der Last und ihrer Ankopplung an den Motor besser nachvollziehen.

Für die in diesem Beitrag behandelten Messungen wurde zur Erfassung der Rotorbewegung ein Encoder mit 5.000 Strichen und TTL-Ausgang verwendet. Mit Hilfe der 4-fach Flankenauswertung lässt sich die Bewegung auf 20.000 Pulse/U auflösen. Bei einem normalen Schrittmotor mit 200 Vollschritten/U entspricht das 100 Pulsen pro Vollschritt.

Der Encoder wurde über eine drehsteife Elastomer-Kupplung direkt an den Motor angekoppelt. Als Testmotor wurde ein Oriental Motor Typ PK268-E2.0B in paralleler Beschaltung eingesetzt. Auf der B-Welle war ein Dämpfer Typ D6CL-6.3F (Massenträgheit J_Dämpfer=18,5*10-6 kg*m², J_Motor=48*10-6 kg*m²) montiert.

Testaufbau, Schrittmotor mit Encoder

Schrittmotor PK268-E2.0B mit Encoder und Dämpfer

Angesteuert wurde der Motor über eine 3-Achs Endstufe „3D-Step“ mit der klassischen L297/L298 Treiber-Kombination bei 2,0A(effektiv), also etwas unterhalb des Nennstroms von 2,8A. Die Erfassung der Encoder-Signale erfolgte über eine Beckhoff-SPS mit einer Taktrate von 2ms.

Bei einem Vollschritt sollte der Motor einen Winkel von 1,8° weiterschalten. Eine erste Messung zeigt, dass der Motor trotz der Belastung durch den Dämpfer und den Encoder dabei deutliche Schwingungen ausfürt. Der Rotor schwingt bis fast 2,8° über und pendelt auf 1,5° zurück, bevor die Schwingung langsam abklingt und nach ca. 10ms in einem Toleranzband von +/- 0,2° ausklingt.

Messergebnis Vollschritt mit Dämpfer

Vollschritt mit Dämpfer

Noch deutlich schlimmer sieht es aus, wenn man den Dämpfer von der B-Welle des Motors entfernt. Das Überschwingen ist mit max. 3,0° von der Amplitude her zwar nur unwesentlich stärker, jedoch lässt sich deutlich erkennen, dass die Dämpfung stark reduziert wird. Es dauert jetzt ca. 25ms, bis der Rotor im selben Toleranzband bleibt wie dies beim ersten Versuch bereits nach 10ms der Fall war.

Messergebnis für Vollschritt ohne Dämpfer

Vollschritt ohne Dämpfer

Nach Umschalten der Endstufe in den (stromkompensierten) Halbschritt und erneuter Montage des Dämpfers ergibt der nächste Versuch die folgende Sprungantwort. Zu beachten ist hier, dass der Motor nach einem Halbschritt im Vergleich zu den vorherigen Versuchen nur den halben Winkel, also 0,9° zurück gelegt hat. Die Schwingung reicht hier von ca. 1,15 bis zurück nach 0,7° und erreicht bereits nach einer Schwingung ein Toleranzband von +/-0,1°. Zur besseren Vergleichbarkeit wurde der Maßstab des Graphen unverändert beibehalten.

Messergebnis für Halbschritt mit Dämpfer

Halbschritt mit Dämpfer

Beim Übergang zu einer kontinuierlichen Drehbewegung wird der Rotor je nach Drehzahl weitergeschaltet, bevor die durch einen einzelnen Schritt angeregte Schwingung vollständig abgeklungen ist. Das zeigt auch die folgende Messung bei ca. 42Hz Halbschritt. Trotzdem führen insbesondere der erste Überschwinger und die stufenweise Bewegung im unteren Drehzahlbereich zu unangenehmen Betriebsgeräuschen.

Messergebnis für eine kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

Kontinuierliche Bewegung mit ca. 42Hz Halbschrittrate

In der Anwendung treibt der Motor eine mehr oder weniger steif angekoppelte Last an. Es ist angesichts dieser Messungen leicht nachvollziehbar, dass der Motor mit seiner Schwingneigung leicht Resonanzstellen in der Mechanik anregen kann.

Die Amplitude des Überschwingens hängt direkt mit dem Drehmoment und damit mit dem Motorstrom zusammen. In diesem Versuch wurde der Motor bereits ca. 30% unterhalb seines Nennstroms betrieben. Bei Nennstrom ist also eine noch stärkere Schwingung zu erwarten. Umgekehrt bedeutet dies, dass eine Absenkung des Motorstroms –sofern in der Anwendung entsprechende Drehmomentreseven vorhanden sind- zu einer Reduktion von Schwingungen führen wird.

Wie der Gegenversuch mit dem Dämpfer zeigt, hilft eine steif angekoppelte Last, das Gesamtsystem zu bedämpfen. Auch die Auswahl einer geeigneten Kupplung sowie eine stabile Lastmechanik (geringe Schwingungsneigung) sind Hilfen, um Resonanzprobleme zu vermeiden. Einen deutlichen Vorteil bietet vor allem der Wechsel zum Halbschritt-Modus. Bei Einsatz einer Endstufe mit Drehmoment-Kompensation (also der Erhöhung des Phasenstroms in den Halbschrittpositionen) entsteht durch den Einsatz von Halbschritt kein nennenswerter Drehmomentverlust. Daher und wegen der erhöhten Schwingungsneigung im Vollschritt rate ich grundsätzlich von der Verwendung des Vollschrittbetriebs ab.

Eine weitere Optimierung besteht im Einsatz von Steuerungen mit Mikroschritt und ggf. der Möglichkeit, das beim Schrittmotor besonders ausgeprägte Rastmoment zu kompensieren. Diesem Thema werde ich demnächst einen eigenen Beitrag widmen.

Seriell oder parallel? Alles eine Frage der Drehzahl, oder?

Dienstag, Mai 24th, 2011

Über die Unterschiede von unipolaren und bipolaren Schrittmotoren wurden bereits einige Worte verloren. Aber wie sieht es bei Motoren mit 8 Anschlüssen aus, sollte man hier die Wicklungen seriell oder parallel verschalten? Das ist in erster Linie eine Frage der geforderten Drehzahl, aber auch des Geldbeutels. Der folgende Beitrag widmet sich den Vor- und Nachteilen beider Beschaltungsarten.

Warum sich bei einem unipolaren Motor die Wicklungsinduktivität vervierfacht, wenn man die Wicklungen bipolar betreibt (also in Reihe schaltet), wurde ja bereits hergeleitet. Dieser Zusammenhang gilt natürlich auch für einen Schrittmotor mit 8 Anschlüssen. Aus dem gleichen Grund ändert sich die Induktivität gegenüber dem uniolaren Fall nicht, wenn man die Wicklungshälften parallel schaltet. Für den Wicklungswiderstand gelten dagegen die bekannten Zusammenhänge für Reihen- und Parallelschaltung, also doppelter Widerstand im seriellen Betrieb und halber Widerstand bei parallelem Betrieb. Oder anders ausgedrückt: Beim Wechsel von parallel auf seriell vervierfacht sich der Widerstand. Und das hat Auswirkungen auf die elektrische Zeitkonstante der Wicklung (tau=L/R). Sie bleibt nämlich in beiden Fällen gleich.

Trotzdem gibt es erhebliche Unterschiede in der Perfomance des Motors. Dieser Effekt ist durch die Spannung zu erklären. Legt man die gleiche Spannung an einen Schrittmotor mit parallel geschalteten Wicklungen an und an einen mit seriell geschalteten Wicklungen, liegt an den Teilwicklungen des ersten Motors die volle Spannung an, wärend die seriell geschalteten Wicklungen eine Art Spannungsteiler bilden, so dass jede Teilwicklung nur die halbe Betriebsspannung „sieht“. Und da eine höhere Betriebsspannung zu einem schnelleren Stromanstieg führt, erreicht ein Motor mit parallel geschalteten Wicklungen deutlich höhere Drehzahlen (bzw. bei gleicher Drehzahl mehr Drehmoment, zumindest im oberen Bereich der Kennlinie).

Die folgenden Kennlinen verdeutlichen den Unterschied. Während der seriell beschaltete Schrittmotor bei 24V= und 200 U/min nur noch 0,7N, erreicht, schafft der parallel verschaltete Motor mit 1,7Nm noch mehr als das Doppelte. Die Kennlinien gelten übrigens auch für den PK268-E2.0, bei PK268PDA und PK268PA ist lediglich die serielle bzw. parallele Verdrahtung schon werksseitig vorgenommen worden. Einen ähnlichen Effekt wie der Wechsel von serieller zu paralleler Beschaltung hat übrigens eine Anhebung der Betriebsspannung, wie der 2. Satz Kennlinien deutlich macht. Wegen der unterschiedlichen Spannungen (36V vs. 48V) sind jetzt beide Beschaltungsarten allerdings nicht mehr direkt vergleichbar.

Kennlinen PK268

Drehzahl Drehmoment-Kennlinien beim PK268 (oben parallel, unten seriell).

(Quelle: Katalog 2-Phasen Schrittmotoren, Fa. Oriental Motor)

Da beide Teilwicklungen mit dem Nennstrom betrieben werden sollen, erreicht man die höhere Leistung im Parallelbetrieb (wir erinnern uns: P=ω*M, also Leistung ist Drehmoment mal Drehzahl) letztlich durch einen höheren Strom. Und damit benöigt man unter Umständen eine leistungsstärkere Schrittmotorsteuerung (bzw. -endstufe), die dann entsprechend teurer ausfällt. Ob sich der Leistungssprung lohnt, ist also auch eine finanzielle Frage. Ob eine höhere Betriebsspannung für genügend Drehmoment-Reserve sorgt, muss im Einzelfall geprüft werden, z.B. durch Simulationen oder Messungen. Bei Serienanwendungen ist es nicht unüblich, vom Motorhersteller Kennlinien für die konkreten Betriebsbedingungen messen zu lassen. Unter Umständen erreicht man aber auch erst mit einer kundenspezifisch angepassten Wicklung ein optimales Ergebnis. Es kann sich also lohnen, einen externen Berater hinzuzuziehen…